Solving Square $\mathbf{A x}=\mathbf{b}$: Inverse Matrix

 Linear Algebra

 Linear Algebra}

Josh Engwer

TTU
11 September 2015

Properties of Scalars (Review)

Recall from College Algebra the properties of scalars:

Theorem

(Properties of Scalars)
Let $a, b, c \in \mathbb{R}$ be scalars.
Then:
(S1) $a+b=b+a$
(S2) $a+(b+c)=(a+b)+c$
(S3) $a+0=a$
(S4) $a+(-a)=0$
Commutativity of Scalar Addition
Associativity of Scalar Addition
Zero is Scalar Additive Identity
$-a$ is Scalar Additive Inverse
(S5) $a b=b a$
(S6) $a(b c)=(a b) c$
Commutativity of Ordinary Multiplication Associativity of Ordinary Multiplication
(S7) \quad (1) $a=a$
(S8) $a^{-1} a=a a^{-1}=1$
One is Ordinary Multiplicative Identity
a^{-1} is Ordinary Multiplicative Inverse $(a \neq 0)$
(S9) $\quad a(b+c)=a b+a c \quad$ Distributing Ordinary Mult. over Scalar Add.

Solving Scalar Linear Equation $a x=b$ (Motivation)

Recall from College Algebra how to solve scalar linear eqn $a x=b$ for x :
CASE I: Suppose $a \neq 0$. Then:

$$
\begin{array}{clll}
a x & =b & & \\
a^{-1} a x & =a^{-1} b & & {\left[\text { Multiply both sides by } a^{-1}\right]} \\
\left(a^{-1} a\right) x & =a^{-1} b & & {[\mathrm{~S} 6]} \\
(1) x & =a^{-1} b & & {[\mathrm{~S} 8]} \\
x & =a^{-1} b & & {[\mathrm{~S} 7]}
\end{array}
$$

$\therefore x=a^{-1} b$, where $a^{-1}=\frac{1}{a}$ is the multiplicative inverse of a.
CASE II: Suppose $a=0$. Then:

$$
a x=b \Longrightarrow(0) x=b \Longrightarrow 0=b \Longrightarrow\left\{\begin{array}{cl}
\text { Infinitely many solns } & \text { if } b=0 \\
\text { No solution } & \text { if } b \neq 0
\end{array}\right.
$$

Inverse of a Square Matrix (Definition)

Question: Is there an inverse of matrix A when solving linear sys $A \mathbf{x}=\mathbf{b}$? Answer: Provided the linear system/matrix is square, then maybe:

Definition

(Inverse of a Square Matrix)
Let A be a $n \times n$ square matrix and I be the $n \times n$ identity matrix.
Then A is invertible if there exists a $n \times n$ matrix A^{-1} such that

$$
A^{-1} A=A A^{-1}=I
$$

A^{-1} is called the (matrix multiplicative) inverse of A.
If A does not have an inverse, A is called singular (AKA noninvertible).
Non-square matrices do not have inverses (since $A B \neq B A$ if $m \neq n$.)

Inverse of a Square Matrix (Uniqueness)

Question: Is it possible for an invertible matrix to have two or more inverses? Answer: No!! There will be one and only one inverse:

Theorem

(Uniqueness of an Inverse Matrix)
If $n \times n$ square matrix A is invertible, then its inverse A^{-1} is unique.

Inverse of a Square Matrix (Uniqueness)

Question: Is it possible for an invertible matrix to have two or more inverses? Answer: No!! There will be one and only one inverse:

Theorem

(Uniqueness of an Inverse Matrix)
If $n \times n$ square matrix A is invertible, then its inverse A^{-1} is unique.
PROOF: Let A be a $n \times n$ invertible matrix and I be the $n \times n$ identity matrix. Assume A has two inverses: A^{-1} and A_{1}^{-1}
Then by definition of inverse of $A: \quad A^{-1} A=A A^{-1}=I \quad$ and $\quad A_{1}^{-1} A=A A_{1}^{-1}=I$

$$
\begin{array}{lrll}
& & A A_{1}^{-1} & =I \\
& & {[\text { Definition of Inverse of } A]} \\
\Longrightarrow & A^{-1} A A_{1}^{-1} & =A^{-1} I & \\
\hline & A^{-1} A A_{1}^{-1} & =A^{-1} & \\
\hline & {\left[I \text { is Matrix Multiply both sidiplicative by } A^{-1}\right]} \\
\Longrightarrow & \left(A^{-1} A\right) A_{1}^{-1} & =A^{-1} & \\
\hline & I \text { Associtity }] \\
\Longrightarrow & I A_{1}^{-1} & =A^{-1} & \\
\hline & A_{1}^{-1} & =A^{-1} & \\
{[\text { Definition of of Inverse of } A \text { is Matrix Multiplicative Identity }]}
\end{array}
$$

\therefore The two inverses A^{-1} and A_{1}^{-1} are actually the same.
\therefore The inverse of A is unique. QED

How to Systematically find the Inverse of a Matrix?

Consider finding the inverse of $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$.
Then, if the inverse $A^{-1}=\left[\begin{array}{ll}x_{11} & x_{12} \\ x_{21} & x_{22}\end{array}\right]$ exists:

$$
\begin{gathered}
A A^{-1}=I \Longrightarrow\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
\Longrightarrow\left\{\begin{array} { c }
{ x _ { 1 1 } + 2 x _ { 2 1 } = 1 } \\
{ 3 x _ { 1 1 } + 4 x _ { 2 1 } = 0 }
\end{array} \text { and } \left\{\begin{array}{r}
x_{12}+2 x_{22}=0 \\
3 x_{12}+4 x_{22}=1
\end{array}\right.\right. \\
\Longrightarrow \text { Perform Gauss-Jordan on }\left[\begin{array}{ll|l|l}
1 & 2 & 1 \\
3 & 4 & 0
\end{array}\right] \text { and }\left[\begin{array}{ll|l}
1 & 2 & 0 \\
3 & 4 & 1
\end{array}\right] \\
\Longrightarrow \text { Perform Gauss-Jordan on }\left[\begin{array}{cc|cc}
1 & 2 & 1 & 0 \\
3 & 4 & 0 & 1
\end{array}\right]=[A \mid I]
\end{gathered}
$$

If A^{-1} exists, then linear systems have unique soln's $\Longrightarrow \operatorname{RREF}(A)=I$. If A is singular, then linear systems have no solution $\Longrightarrow \operatorname{RREF}(A) \neq I$. This analysis generalizes to when A is $n \times n$.

Finding an Inverse via Gauss-Jordan Elimination

Question: So how to find the inverse of A (if it exists)? Answer: Apply Gauss-Jordan Elimination as follows:

Theorem

(Finding an Inverse via Gauss-Jordan Elimination)
GIVEN: Square $n \times n$ matrix A.
TASK: Find A^{-1} if it exists, otherwise conclude A is singular.
(1) Form augmented matrix $[A \mid I]$, where I is $n \times n$ identity matrix.
(2) Apply Gauss-Jordan Elimination to $[A \mid I]$:

If $\operatorname{RREF}(A) \neq I$, then A is singular.
If $\operatorname{RREF}(A)=I$, then $[A \mid I] \xrightarrow{\text { Gauss-Jordan }}\left[I \mid A^{-1}\right]$
SANITY CHECK: Check that $A^{-1} A=I$ and $A A^{-1}=I$.

Finding A^{-1} via Gauss-Jordan Elim. (Examples)

WEX 2-3-1: Using Gauss-Jordan, find the inverse (if it exists) of $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
$[A \mid I]=\left[\begin{array}{ll|ll}1 & 2 & 1 & 0 \\ 3 & 4 & 0 & 1\end{array}\right] \xrightarrow{(-3) R_{1}+R_{2} \rightarrow R_{2}}\left[\begin{array}{cc|cc}1 & 2 & 1 & 0 \\ 0 & -2 & -3 & 1\end{array}\right]$
$\xrightarrow{R_{2}+R_{1} \rightarrow R_{1}}\left[\begin{array}{cc|cc}{[1} & 0 & -2 & 1 \\ 0 & -2 & -3 & 1\end{array}\right] \xrightarrow{\left(-\frac{1}{2}\right) R_{2} \rightarrow R_{2}}\left[\begin{array}{cc|cc}1 & 0 & -2 & 1 \\ 0 & 1 & \frac{3}{2} & -\frac{1}{2}\end{array}\right]=\left[I \mid A^{-1}\right]$
$\therefore A^{-1}=\left[\begin{array}{cc}-2 & 1 \\ 3 / 2 & -1 / 2\end{array}\right]$

Finding A^{-1} via Gauss-Jordan Elim. (Examples)

WEX 2-3-2: Using Gauss-Jordan, find the inverse (if it exists) of $A=\left[\begin{array}{ll}1 & 1 \\ 3 & 3\end{array}\right]$ $[A \mid I]=\left[\begin{array}{ll|ll}1 & 1 & 1 & 0 \\ 3 & 3 & 0 & 1\end{array}\right] \xrightarrow{(-3) R_{1}+R_{2} \rightarrow R_{2}}\left[\begin{array}{cc|cc}\hline 1 & 1 & 1 & 0 \\ 0 & 0 & -3 & 1\end{array}\right]=[\operatorname{RREF}(A) \mid B]$
\therefore Since $\operatorname{RREF}(A) \neq I, A^{-1}$ does not exist $\Longrightarrow A$ is singular

Inverse of a 2×2 Matrix

For 2×2 matrices, there's a simple formula to use to find an inverse:

Corollary

(Inverse of a 2×2 Matrix)
Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ be a 2×2 matrix s.t. $a, b, c, d \in \mathbb{R}$. Then:

$$
\text { If } a d-b c \neq 0 \text {, then } A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right]
$$

$$
\text { If } a d-b c=0, \text { then } A \text { is singular. }
$$

PROOF: Apply Gauss-Jordan to augmented matrix $[A \mid I]=\left[\begin{array}{ll|ll}a & b & 1 & 0 \\ c & d & 0 & 1\end{array}\right]$.

Properties of Inverses

Theorem

(Properties of Inverse Matrices)
Let A, B be $n \times n$ invertible matrices, k be positive integer, and $\alpha \neq 0$. Then $A^{-1}, A^{k}, \alpha A, A^{T}, A B$ are all invertible and the following are true:
(11) $\left(A^{-1}\right)^{-1}=A$
(12) $\left(A^{k}\right)^{-1}=\left(A^{-1}\right)^{k}$
(13) $(\alpha A)^{-1}=\frac{1}{\alpha} A^{-1}$
(14) $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$
(15) $(A B)^{-1}=B^{-1} A^{-1}$

Inverse of an Inverse Inverse of a Power Inverse of a Scalar Mult. Inverse of a Transpose Inverse of a Product

Properties of Inverses

Theorem

(Properties of Inverse Matrices)
Let A, B be $n \times n$ invertible matrices, k be positive integer, and $\alpha \neq 0$. Then $A^{-1}, A^{k}, \alpha A, A^{T}, A B$ are all invertible and the following are true:

(11)	$\left(A^{-1}\right)^{-1}=A$	Inverse of an Inverse
(12)	$\left(A^{k}\right)^{-1}=\left(A^{-1}\right)^{k}$	Inverse of a Power
(13)	$(\alpha A)^{-1}=\frac{1}{\alpha} A^{-1}$	Inverse of a Scalar Mult.
(14)	$\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$	Inverse of a Transpose
(15)	$(A B)^{-1}=B^{-1} A^{-1}$	Inverse of a Product

PROOF: Let I be the $n \times n$ identity matrix.
(11): $A^{-1} A=A A^{-1}=I \Longrightarrow A$ is inverse of $A^{-1} \Longrightarrow\left(A^{-1}\right)^{-1}=A \quad$ QED

Properties of Inverses

Theorem

(Properties of Inverse Matrices)
Let A, B be $n \times n$ invertible matrices, k be positive integer, and $\alpha \neq 0$. Then $A^{-1}, A^{k}, \alpha A, A^{T}, A B$ are all invertible and the following are true:

(11)	$\left(A^{-1}\right)^{-1}=A$	Inverse of an Inverse
(12)	$\left(A^{k}\right)^{-1}=\left(A^{-1}\right)^{k}$	Inverse of a Power
(13)	$(\alpha A)^{-1}=\frac{1}{\alpha} A^{-1}$	Inverse of a Scalar Mult.
(14)	$\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$	Inverse of a Transpose
(15)	$(A B)^{-1}=B^{-1} A^{-1}$	Inverse of a Product

PROOF: Let I be the $n \times n$ identity matrix.
(I5):

$$
\left(B^{-1} A^{-1}\right)(A B) \stackrel{M 1}{=} B^{-1}\left(A^{-1} A\right) B=B^{-1}(I) B=B^{-1} B=I \quad \Longrightarrow(A B)^{-1}=B^{-1} A^{-1}
$$

QED

Inverse of an Extended Product

How to find the inverse of a product of three matrices?

Corollary

(Inverse of an Extended Product)
Let A, B, C be $n \times n$ invertible matrices. Then:

$$
(A B C)^{-1}=C^{-1} B^{-1} A^{-1}
$$

PROOF: $(A B C)^{-1} \stackrel{M 1}{=}[(A B) C]^{-1} \stackrel{I 5}{=} C^{-1}(A B)^{-1} \stackrel{I 5}{=} C^{-1} B^{-1} A^{-1} \quad$ QED

This can be generalized to any matrix extended product:

Corollary

(Inverse of a Generalized Extended Product)
Let $A_{1}, A_{2}, \ldots, A_{k-1}, A_{k}$ be $n \times n$ invertible matrices. Then:

$$
\left(A_{1} A_{2} \cdots A_{k-1} A_{k}\right)^{-1}=A_{k}^{-1} A_{k-1}^{-1} \cdots A_{2}^{-1} A_{1}^{-1}
$$

Cancellation Properties of Matrix Products

Recall from College Algebra how to cancel a factor of a scalar product:

$$
\begin{gathered}
\text { Let } a, b \in \mathbb{R} \text { and } c \neq 0 \text {. Then: } \\
a c=b c \Longrightarrow a c\left(\frac{1}{c}\right)=b c\left(\frac{1}{c}\right) \Longrightarrow a(1)=b(1) \Longrightarrow a=b \\
c a=c b \Longrightarrow\left(\frac{1}{c}\right) c a=\left(\frac{1}{c}\right) c b \Longrightarrow(1) a=(1) b \Longrightarrow a=b
\end{gathered}
$$

Question: Is there a similar cancelling behavior for matrix products? Answer: Yes, provided the matrix to be cancelled is invertible:

Theorem

(Cancellation Properties of Matrix Products)
Let C be an invertible matrix and A, B have compatible shapes. Then:
(C1) If $A C=B C$, then $A=B$
(C2) If $C A=C B$, then $A=B$

Right-cancellation
Left-cancellation

Cancellation Properties of Matrix Products

Theorem

(Cancellation Properties of Matrix Products)
Let C be an invertible matrix and A, B have compatible shapes. Then:

$$
\begin{array}{ll}
\text { (C1) If } A C=B C \text {, then } A=B & \text { Right-cancellation } \\
\text { (C2) If } C A=C B \text {, then } A=B & \text { Left-cancellation }
\end{array}
$$

PROOF: Since C is invertible, it has an inverse C^{-1} s.t. $C^{-1} C=C C^{-1}=I$ where I is the identity matrix with same shape as C.

$$
\begin{aligned}
& \begin{aligned}
A C & =B C \\
\Longrightarrow \quad A C C^{-1} & =B C C^{-1} \\
\Longrightarrow \quad A\left(C C^{-1}\right) & =B\left(C C^{-1}\right)
\end{aligned} \\
& A I=B I \\
& A=B
\end{aligned}
$$

[Given Statement]
[Right-Multiply both sides by C^{-1}]
[Associativity of Matrix Multiplication]
[Definition of Inverse of C]
[I is Matrix Multiplicative Identity]
\therefore If $A C=B C$, then $A=B \quad$ QED

Cancellation of Matrix Products (WARNING)

Remember, for $A C=B C$ to imply $A=B, C$ must be invertible.
Otherwise, it's possible for $A C=B C$ yet $A \neq B$:
Consider $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right], B=\left[\begin{array}{rrr}17 & 2 & -1 \\ 20 & 9 & 0 \\ 37 & 5 & 3\end{array}\right], \quad C=\left[\begin{array}{lll}1 & -2 & 2 \\ 2 & -4 & 4 \\ 4 & -8 & 8\end{array}\right]$.
Then, clearly $A \neq B$ and yet
$A C=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]\left[\begin{array}{lll}1 & -2 & 2 \\ 2 & -4 & 4 \\ 4 & -8 & 8\end{array}\right]=\left[\begin{array}{ccc}17 & -34 & 34 \\ 38 & -76 & 76 \\ 59 & -118 & 118\end{array}\right]$
$B C=\left[\begin{array}{rrr}17 & 2 & -1 \\ 20 & 9 & 0 \\ 37 & 5 & 3\end{array}\right]\left[\begin{array}{lll}1 & -2 & 2 \\ 2 & -4 & 4 \\ 4 & -8 & 8\end{array}\right]=\left[\begin{array}{ccc}17 & -34 & 34 \\ 38 & -76 & 76 \\ 59 & -118 & 118\end{array}\right]$

Solving Square Linear System $\mathbf{A x}=\mathbf{b}$ via A^{-1}

How can A^{-1} be used to solve square linear system $A \mathbf{x}=\mathbf{b}$?

Theorem

(Square Linear Systems with Unique Solution)
Let A be an invertible matrix.
Then square linear system $A \mathbf{x}=\mathbf{b}$ has unique solution given by $\mathbf{x}=A^{-1} \mathbf{b}$.
REMARK: This is useful when solving several square linear systems with the same matrix A and different RHS b's since A^{-1} only has to be found once:

$$
\begin{aligned}
& A \mathbf{x}=\mathbf{b}_{1} \Longrightarrow \mathbf{x}=A^{-1} \mathbf{b}_{1} \\
& A \mathbf{x}=\mathbf{b}_{2} \Longrightarrow \mathbf{x}=A^{-1} \mathbf{b}_{2} \\
& A \mathbf{x}=\mathbf{b}_{3} \Longrightarrow \mathbf{x}=A^{-1} \mathbf{b}_{3} \\
& A \mathbf{x}=\mathbf{b}_{4} \Longrightarrow \mathbf{x}=A^{-1} \mathbf{b}_{4}
\end{aligned}
$$

Solving Square Linear System $\mathbf{A x}=\mathbf{b}$ via A^{-1}

How can A^{-1} be used to solve square linear system $A \mathbf{x}=\mathbf{b}$?

Theorem

(Square Linear Systems with Unique Solution)
Let A be an invertible matrix.
Then square linear system $A \mathbf{x}=\mathbf{b}$ has unique solution given by $\mathbf{x}=A^{-1} \mathbf{b}$.
PROOF: Since A is invertible, it has inverse $A^{-1} \Longrightarrow A^{-1} A=A A^{-1}=I$. where I is the identity matrix with same shape as A.

$$
\begin{aligned}
& & A \mathbf{x} & =\mathbf{b} \\
& A^{-1} A \mathbf{x} & =A^{-1} \mathbf{b} & \quad \text { Given Statement }] \\
\Longrightarrow & \left(A^{-1} A\right) \mathbf{x} & =A^{-1} \mathbf{b} & \quad \text { [Associativity of Matrix Multiplication] } \\
\Longrightarrow & (I) \mathbf{x} & =A^{-1} \mathbf{b} & \quad \text { Definition of Inverse of } A] \\
\Longrightarrow & \mathbf{x} & =A^{-1} \mathbf{b} & \quad[I \text { is Matrix Multiplicative Identity }]
\end{aligned}
$$

Assume there are two solutions \mathbf{x}_{1} and \mathbf{x}_{2}.
Then $A \mathbf{x}_{1}=\mathbf{b}$ and $A \mathbf{x}_{2}=\mathbf{b} \Longrightarrow \mathbf{x}_{1}=A^{-1} \mathbf{b}$ and $\mathbf{x}_{2}=A^{-1} \mathbf{b} \Longrightarrow \mathbf{x}_{1}=\mathbf{x}_{2}$
\therefore The solution to square $A \mathbf{x}=\mathbf{b}$ is unique. QED

Solving Square Matrix Equation $A X=B$ via A^{-1}

(A is invertible \& B, X have compatible shapes s.t. product $A X$ is well-defined.) A^{-1} can be used to solve square matrix eqn $A X=B$ for X :

$$
\begin{aligned}
& A X=B \quad \text { [Given Statement] } \\
& \Longrightarrow \quad A^{-1} A X \quad=A^{-1} B \quad \text { [Left-Multiply both sides by } A^{-1} \text {] } \\
& \Longrightarrow \quad\left(A^{-1} A\right) X=A^{-1} B \text { [Associativity of Matrix Multiplication] } \\
& \Longrightarrow \quad(I) X \quad=A^{-1} B \quad \text { [Definition of Inverse of } A \text {] } \\
& \Longrightarrow \quad X=A^{-1} B \text { [I is Matrix Multiplicative Identity] } \\
& \therefore A X=B \Longrightarrow X=A^{-1} B
\end{aligned}
$$

Solving Square Matrix Equation $X A=B$ via A^{-1}

(A is invertible \& B, X have compatible shapes s.t. product $X A$ is well-defined.) A^{-1} can be used to solve square matrix eqn $X A=B$ for X :

$$
\begin{array}{rlll}
& & X A & =B \\
& X A A^{-1} & =B A^{-1} \quad \text { [Given Statement] } & \text { [Right-Multiply both sides by } \left.A^{-1}\right] \\
\Longrightarrow & X\left(A A^{-1}\right) & =B A^{-1} \quad \text { [Associativity of Matrix Multiplication] } \\
\Longrightarrow \quad X(I) & =B A^{-1} \quad \text { [Definition of Inverse of } A \text {] } \\
\Longrightarrow \quad X & X & =B A^{-1} \quad[I \text { is Matrix Multiplicative Identity] } \\
& \therefore \quad X A=B \Longrightarrow X=B A^{-1}
\end{array}
$$

Fin.

