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Elementary Row Operations (Review)

Consider solving several linear systems Ax = b with same A but different b’s:

@ Performing Gauss-Jordan on each [A|b] repeats the same work alot!!
@ Computing x = A~'b only works if A is square AND invertible!!

Recall the definition of an elementary row operation:

(Elementary Row Operations)

There are three types of elementary row operations applicable to [A|b]:
(SWAP) [Ri < R Swap row i & row j

(SCALE) [aR; — R} Multiply row j by a non-zero scalar «
(COMBINE) [aR; + R; — R;] Add scalar multiple o of row i to row j

VERY IMPORTANT: For this section (LARSON 2.4) only:

@ The only elementary row operation considered is COMBINE.
@ COMBINE operations will be applied to A instead of [A|b].

Josh Engwer (TTU) Solving Ax = b w/ different b’s: LU-Factorization 14 September 2015



COMBINE Operations (Examples)

3.4 0 3 4 0
1 0 1 SRR R, 14 20 1
I 7 9 | |17 27 9
i 4 0] 3 4 0]
~1 0 1 SRARRC 1 0 1
I 7 9 | 17 27 9|
i 4 0] T3 4 0]
100 1| BB 1 0 1
I 7 9 | 3 7 14|
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Elementary Matrices Representing SWAP Operations

It would be useful to encapsulate an elementary row op into a matrix:

Definition

(Elementary Matrix)

An n x n square matrix E is an elementary matrix if it can be obtained from
the n x n identity matrix I by a single elementary row operation.

Here are some 3 x 3 elementary matrices:

0 0
], [Rz(—)R3]Z[ 0 1]
1 0

NOTE: SWAP operations will never be used in this section - the above
elementary matrix representations are shown here for completion.

0
1

- O O
SO =

1
0
0

(SWAP) [R, <+ Ry : [
0
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Elementary Matrices Representing SCALE Operations

It would be useful to encapsulate an elementary row op into a matrix:

Definition

(Elementary Matrix)

An n x n square matrix E is an elementary matrix if it can be obtained from
the n x n identity matrix I by a single elementary row operation.

Here are some 3 x 3 elementary matrices:

300 1 0 0
(SCALE) [3R1 —)Rl} : [ 01 0 ], [(—8)R3 — R3] : [ 0 1 0 ]
0 0 1

NOTE: SCALE operations will never be used in this section - the above
elementary matrix representations are shown here for completion.
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Elementary Matrices Representing COMBINE Op’s

It would be useful to encapsulate an elementary row op into a matrix:

Definition

(Elementary Matrix)

An n x n square matrix E is an elementary matrix if it can be obtained from
the n x n identity matrix I by a single elementary row operation.

Here are some 3 x 3 elementary matrices:

(COMBINE)

1 00 1 00
[SRl + R, — Rz] : 51 01, [(—S)Rz + R; — R';] : 0 1 0

0 0 1 0 -5 1
NOTE: All elementary matrices considered in this section will be COMBINE's.

Josh Engwer (TTU) Solving Ax = b w/ different b’s: LU-Factorization 14 September 2015 6/21



Elementary Matrices applied to A with m = n

To apply an elem row op to matrix A, left-multiply A by elementary matrix.

3 4 0
let A= -1 0 1 Then:
27 9
(1 07T 40'5 [ 3 4 0
EA = 10 “1 0 1 SRtk 14 20 1
K 1] 7 9 | 2 7 9
M1 07 3407 _ 3 4 0]
EA=|0 1 0 1 0 1| RER=KB 1 0
50 1| 27 9] | 17 27 9 |
10 07 3 4 0] 3 4 0 ]
EA=]0 1 0 10 1| RfR2RL 1 0 1
05 1 27 9 3 7 14

WARNIN_G: Right-;nu_ltiplying A b_y an elementary ;natrix applies_the
corresponding elementary column operation.
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Elementary Matrices applied to A with m < n

To apply an elem row op to matrix A, left-multiply A by elementary matrix.

340 8
LetA=| -1 0 1 6 Then:
9 3
10 07 3 4 0 8] (3 4 0 8
EA=|5 1 0 1 0 1 6| BtRzRo 4 20 1 46
o0 1 ]| 27 9 3] 2 7 9 3
M1 07T 4 8 3 4 0 8]
E)A = 10 10 1 6| BB 1 01 6
E 1] 7 3 | | 17 27 9 43 ]
10 07 3 4 87 [ 3 4 0 8]
EA=|0 1 0 10 1 6| LB 10 1 6
05 1] | 7 3 | -3 7 14 33|
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Elementary Matrices applied to A with m > n

To apply an elem row op to matrix A, left-multiply A by elementary matrix.

3 4
let A=| -1 0 Then:

2 7
(10 077 4 (3 4
EA=|5 1 0 || -1 o 224y 9
o0 1] 7 | 2 7
(10 077 4] [ 3 4
EA = 10 —1 o | PtRoR g 9
50 1] 7 | 17 27
M1 01 3 47 [ 3 4
EA=|0 10 1 o | PtRORL g
0 1] 7 | 37
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Inverse of an Elementary Matrix

(Elementary Matrices are Invertible)
If E is an elementary matrix, then E~! exists and is an elementary matrix.

Question: What is the inverse of an elementary matrix?
Answer: The inverse "undoes” the elementary row operation.

ELEMENTARY MATRIX: ITS INVERSE:
01 0 01 0
[R1<—>R2]: 1 0 0 [Rl(—)Rz}: 1 0 0
0 0 1 0 0 1
300 100
BR, —R]:| 0 1 0 [(5)Ri = R]:| 0 1 0
0 0 1 0 0 1
1 00 1 00
[5R1—|—R2—>R2]: 5 10 [(—5)R1—|—R2 —)Rz}: -5 1 0
0 0 1 0 0 1
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Main Diagonal of a Matrix (Definition)

Definition

(Main Diagonal of a Matrix)
The main diagonal of a m x n matrix comprises of all (k, k)-entries of the
matrix for k = 1,2, - - -, min{m, n}.

The main diagonal entries of each matrix below is shown in blue:

{1 2H123} ;i
3 4 4 5 6 5 6
1 2 3 1 2 3 4 1 g 2
4 5 6|, 5 6 7 8 , 7 ] 9
7 8 9 9 10 11 12 10 11 12

14 September 2015 11/21

Josh Engwer (TTU) Solving Ax = b w/ different b’s: LU-Factorization



Special Matrices: Triangular Matrices

In certain applications & higher math, triangular matrices are useful:

Definition
(Triangular Matrices)
Let L, U be m x n matrices. Then:

L is called lower triangular if entries above the main diagonal are all zero.
U is called upper triangular if entries below the main diagonal are all zero.

A matrix is called triangular if it’s either lower or upper triangular.

1 0 1 0 0
Lower Triangular: [; g}{i (5) 8] 340,145 0|,
5 0] [0 8 0]
(1 27 [1 0 3]
Upper Triangular: [(1) i}“) 2 2] 0 41,10 0 61,---
0 0] [0 0 9]
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Special Matrices: Unit Triangular Matrices

Moreover, in what's coming next, unit triangular matrices are useful:
Definition
(Unit Triangular Matrices)

Let L, U be m x n matrices. Then:

L is unit lower triangular if it's lower triangular and has
all ones on main diagonal.

U is unit upper triangular if it's upper triangular and has
all ones on main diagonal.

1 0 1 0
Unit Lower Triangular: {; (1)}[411 (1) g} 31 4(,]1 1 01,
| 1 0] [0 1 |
(1 27 [1 0 1]
Unit Upper Triangular: [(1) i][(l) (1) i’} 0O 11,0 1 6|,
0 0] | 0 1 |
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The Value of Triangular Matrices

Consider the following 3 x 3 lower triangular linear system:

X = 1 1 00
2x1 4+ 3x = —1 <= [Albl,whereA=|2 3 0
4x; + Sxp + 6x3 = 11 4 5 6

Then the soln can be found by a forward-solve (AKA forward substitution):

xp =1 — X =
2x1 4+ 3% =—1 = 2(1) +3x =—1 = x = -1
A+ 50 +6n =11 = 4(1)+5(-D)+6n=11 = x =

The cases where the lower triangular linear system has no soln or infinitely
many solns can also be handled with little trouble by a forward-solve.

Having said that, for this section (LARSON 2.4), only linear systems with a
unique solution will be considered.

Josh Engwer (TTU) Solving Ax = b w/ different b’s: LU-Factorization 14 September 2015 14/21



The Value of Triangular Matrices

Consider the following 3 x 3 upper triangular linear system:

x1 + 2x + 3x3 = 3 1 2 3
4x; + 5x3 = 10 <= [A|b],whereA=| 0 4 5
6x3 = 12 0 0 6

Then the solution can be found by a back-solve (AKA back substitution):

6x3 =12 - X3 = 12/6 —— X3 = 2
4x, +5x3 = 10 == 4x, +5(2) =10 = X, = 0
x1+20+3x=3 = x+20)+32)=3 = x = -3

The cases where the upper triangular linear system has no soln or infinitely
many solns can also be handled with little trouble by a back-solve.

Having said that, for this section (LARSON 2.4), only linear systems with a
unique solution will be considered.

Josh Engwer (TTU) Solving Ax = b w/ different b’s: LU-Factorization 14 September 2015 15/21



LU-Factorization of a Matrix (Procedure)

There are times in Linear Algebra where factoring a matrix is quite useful.
Here is the first such instance:

Proposition
(LU-Factorization of a Matrix)

GIVEN: m x n matrix A where no row swaps are necessary.
TASK: Form A = LU, (L is square unit lower triangular & U is upper triangular)

(1) COMBINE to zero-out an entry below main diagonal: [aR; + R; — Rj]

(2) Form m x m elementary matrix corresponding to COMBINE operation: E
(3) Find the inverse of the elementary matrix: E~!

(4) Repeat steps (1)-(3) for all such entries, top-to-bottom, left-to-right

(5) Resulting matrix is upper triangular: U = ExEi_; - - - EsE,E A

(6) Determine L: EiE_, - ExE\A=U = A=E;'E;' - E.'\E.'U

L
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Products of Inverses of COMBINE Elem. Matrices

Products of inverses of COMBINE elementary matrices can be found instantly:

Proposition
(Products of Inverses of COMBINE Elementary Matrices)
LetE\,Ey, - ,Ex_1,Ex be n x n COMBINE elementary matrices.

Then the n x n matrix product E; 'E; ' - - - E; ' \[E;" is simply the unit lower
triangular matrix with each entry below the main diagonal being the
corresponding single non-zero entry in one of the inverse elementary

matrices. J

1 0 0 [ 1 0 O 1 0 0

let E;=| 3 1 0 |,E, = 01 0{|,E5=1{0 1 0 Then:
0 0 1 | -2 0 1 0 -8 1

1 0 0 1 0 0 1 0 O 1 0 O

ET'E;)'E;' = -3 1 0 010 01 0f=|-310

0 0 1 |2 0 1 0 8 1 2 8 1
1 0
The product E5E>E; is not obvious: E;EE; = 3 1 0
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Solving Ax = b via LU-Factorization of A

Proposition

(Solving Ax = b via LU-Factorization of A)

GIVEN: m x n linear system Ax = b where no row swaps are necessary.
TASK: Solve linear system via A = LU

(1) Perform LU-Factorization of A (see previous slides)

(2) Notice Ax=b — (LU)x=b — L(Ux)=b = Let y=Ux

(3) Solve square triangular system Ly = b fory via forward-solve

(4) Solve triangular system Ux =y forx

@ IfU is square, solve Ux =y via back-solve
@ IfU is non-square, solve Ux =y via Gauss-Jordan Elimination

REMARK: Here, Ax = b will always be square & have a unique solution.
The reason being most applications lead to square linear systems with unique
solutions. Moreover, most computer algorithms can only handle square linear
systems with a unique solution. Finally, using A = LU is preferable to
computing A~! since it’s too slow & unstable for a computer to invert most
large square matrices. Take Numerical Linear Algebra for the details.
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Solving Ax = b with different b’'s via A = LU

A = LU is efficient when solving several linear systems with the same matrix A
and different RHS b’s since A = LU only has to be computed once:

Ax=b, = L(UX) =b; = Solve Ly, =b, — Solve Ux = Y1

Ax=b, = L(Ux) =b, — Solve Ly, = b, — Solve Ux =y,

Ax =b; = L(Ux) =b; = Solve Ly; =b; = Solve Ux =y;
( ) =by = -

Ax =by = L(Ux Solve Ly, = by Solve Ux =y,

If A is square, computing A = LU is more efficient than computing A~!.
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Solving Ax = b via LU-Factorization of A (Example)

1 2
WEX2-4-1.LetA:{3 4}.

(a) Find the LU-Factorization for A

A (=3)Ri+Ry—R, [

1 2

L A=LU <= {;

JRERIN

I -1 _
0_2:|:>E1—|:_31:|:>E1—|:
0
1

1 _ _
0 _Z]U:>AE11U:>LE11{

V1
Ly=b —
y {3y1

Ux=y = {xl
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+ 2x, = 1 Back-Solve
- 2)C2 = —4
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