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Elementary Row Operations (Review)

Consider solving several linear systems Ax = b with same A but different b’s:

Performing Gauss-Jordan on each [A|b] repeats the same work alot!!
Computing x = A−1b only works if A is square AND invertible!!

Recall the definition of an elementary row operation:

Definition
(Elementary Row Operations)

There are three types of elementary row operations applicable to [A|b]:

(SWAP) [Ri ↔ Rj] Swap row i & row j
(SCALE) [αRj → Rj] Multiply row j by a non-zero scalar α

(COMBINE) [αRi + Rj → Rj] Add scalar multiple α of row i to row j

VERY IMPORTANT: For this section (LARSON 2.4) only:

The only elementary row operation considered is COMBINE.
COMBINE operations will be applied to A instead of [A|b].
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COMBINE Operations (Examples)

 3 4 0
−1 0 1

2 7 9

 5R1+R2→R2−−−−−−−→

 3 4 0
14 20 1
17 27 9


 3 4 0
−1 0 1

2 7 9

 5R1+R3→R3−−−−−−−→

 3 4 0
−1 0 1
17 27 9


 3 4 0
−1 0 1

2 7 9

 5R2+R3→R3−−−−−−−→

 3 4 0
−1 0 1
−3 7 14
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Elementary Matrices Representing SWAP Operations

It would be useful to encapsulate an elementary row op into a matrix:

Definition
(Elementary Matrix)

An n× n square matrix E is an elementary matrix if it can be obtained from
the n× n identity matrix I by a single elementary row operation.

Here are some 3× 3 elementary matrices:

(SWAP) [R1 ↔ R2] :

 0 1 0
1 0 0
0 0 1

, [R2 ↔ R3] :

 1 0 0
0 0 1
0 1 0


NOTE: SWAP operations will never be used in this section - the above
elementary matrix representations are shown here for completion.
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Elementary Matrices Representing SCALE Operations

It would be useful to encapsulate an elementary row op into a matrix:

Definition
(Elementary Matrix)

An n× n square matrix E is an elementary matrix if it can be obtained from
the n× n identity matrix I by a single elementary row operation.

Here are some 3× 3 elementary matrices:

(SCALE) [3R1 → R1] :

 3 0 0
0 1 0
0 0 1

, [(−8)R3 → R3] :

 1 0 0
0 1 0
0 0 −8


NOTE: SCALE operations will never be used in this section - the above
elementary matrix representations are shown here for completion.
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Elementary Matrices Representing COMBINE Op’s

It would be useful to encapsulate an elementary row op into a matrix:

Definition
(Elementary Matrix)

An n× n square matrix E is an elementary matrix if it can be obtained from
the n× n identity matrix I by a single elementary row operation.

Here are some 3× 3 elementary matrices:

(COMBINE)

[5R1 + R2 → R2] :

 1 0 0
5 1 0
0 0 1

, [(−5)R2 + R3 → R3] :

 1 0 0
0 1 0
0 −5 1


NOTE: All elementary matrices considered in this section will be COMBINE’s.
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Elementary Matrices applied to A with m = n

To apply an elem row op to matrix A, left-multiply A by elementary matrix.

Let A =

 3 4 0
−1 0 1

2 7 9

. Then:

E1A =

 1 0 0
5 1 0
0 0 1

 3 4 0
−1 0 1

2 7 9

 5R1+R2→R2−−−−−−−→

 3 4 0
14 20 1
2 7 9



E2A =

 1 0 0
0 1 0
5 0 1

 3 4 0
−1 0 1

2 7 9

 5R1+R3→R3−−−−−−−→

 3 4 0
−1 0 1
17 27 9



E3A =

 1 0 0
0 1 0
0 5 1

 3 4 0
−1 0 1

2 7 9

 5R2+R3→R3−−−−−−−→

 3 4 0
−1 0 1
−3 7 14


WARNING: Right-multiplying A by an elementary matrix applies the
corresponding elementary column operation.
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Elementary Matrices applied to A with m < n

To apply an elem row op to matrix A, left-multiply A by elementary matrix.

Let A =

 3 4 0 8
−1 0 1 6

2 7 9 3

. Then:

E1A =

 1 0 0
5 1 0
0 0 1

 3 4 0 8
−1 0 1 6

2 7 9 3

 5R1+R2→R2−−−−−−−→

 3 4 0 8
14 20 1 46
2 7 9 3



E2A =

 1 0 0
0 1 0
5 0 1

 3 4 0 8
−1 0 1 6

2 7 9 3

 5R1+R3→R3−−−−−−−→

 3 4 0 8
−1 0 1 6
17 27 9 43



E3A =

 1 0 0
0 1 0
0 5 1

 3 4 0 8
−1 0 1 6

2 7 9 3

 5R2+R3→R3−−−−−−−→

 3 4 0 8
−1 0 1 6
−3 7 14 33
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Elementary Matrices applied to A with m > n

To apply an elem row op to matrix A, left-multiply A by elementary matrix.

Let A =

 3 4
−1 0

2 7

. Then:

E1A =

 1 0 0
5 1 0
0 0 1

 3 4
−1 0

2 7

 5R1+R2→R2−−−−−−−→

 3 4
14 20
2 7



E2A =

 1 0 0
0 1 0
5 0 1

 3 4
−1 0

2 7

 5R1+R3→R3−−−−−−−→

 3 4
−1 0
17 27



E3A =

 1 0 0
0 1 0
0 5 1

 3 4
−1 0

2 7

 5R2+R3→R3−−−−−−−→

 3 4
−1 0
−3 7
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Inverse of an Elementary Matrix

Theorem
(Elementary Matrices are Invertible)

If E is an elementary matrix, then E−1 exists and is an elementary matrix.

Question: What is the inverse of an elementary matrix?
Answer: The inverse ”undoes” the elementary row operation.

ELEMENTARY MATRIX: ITS INVERSE:

[R1 ↔ R2] :

 0 1 0
1 0 0
0 0 1

 [R1 ↔ R2] :

 0 1 0
1 0 0
0 0 1


[3R1 → R1] :

 3 0 0
0 1 0
0 0 1

 [
( 1

3

)
R1 → R1] :

 1
3 0 0
0 1 0
0 0 1


[5R1+R2 → R2] :

 1 0 0
5 1 0
0 0 1

 [(−5)R1+R2 → R2] :

 1 0 0
−5 1 0

0 0 1
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Main Diagonal of a Matrix (Definition)

Definition
(Main Diagonal of a Matrix)

The main diagonal of a m× n matrix comprises of all (k, k)-entries of the
matrix for k = 1, 2, · · · ,min{m, n}.

The main diagonal entries of each matrix below is shown in blue:

[
1 2
3 4

]
,
[

1 2 3
4 5 6

]
,

 1 2
3 4
5 6


 1 2 3

4 5 6
7 8 9

,

 1 2 3 4
5 6 7 8
9 10 11 12

,


1 2 3
4 5 6
7 8 9

10 11 12



Josh Engwer (TTU) Solving Ax = b w/ different b’s: LU-Factorization 14 September 2015 11 / 21



Special Matrices: Triangular Matrices

In certain applications & higher math, triangular matrices are useful:

Definition
(Triangular Matrices)

Let L,U be m× n matrices. Then:

L is called lower triangular if entries above the main diagonal are all zero.
U is called upper triangular if entries below the main diagonal are all zero.

A matrix is called triangular if it’s either lower or upper triangular.

Lower Triangular:
[

1 0
3 4

]
,
[

1 0 0
4 5 0

]
,

 1 0
3 4
5 0

,

 1 0 0
4 5 0
0 8 0

, · · ·

Upper Triangular:
[

1 2
0 4

]
,
[

1 0 3
0 5 6

]
,

 1 2
0 4
0 0

,

 1 0 3
0 0 6
0 0 9

, · · ·
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Special Matrices: Unit Triangular Matrices

Moreover, in what’s coming next, unit triangular matrices are useful:

Definition
(Unit Triangular Matrices)

Let L,U be m× n matrices. Then:

L is unit lower triangular if it’s lower triangular and has
all ones on main diagonal.

U is unit upper triangular if it’s upper triangular and has
all ones on main diagonal.

Unit Lower Triangular:
[

1 0
3 1

]
,
[

1 0 0
4 1 0

]
,

 1 0
3 1
1 0

,

 1 0 0
1 1 0
0 8 1

, · · ·

Unit Upper Triangular:
[

1 2
0 1

]
,
[

1 0 3
0 1 1

]
,

 1 2
0 1
0 0

,

 1 0 1
0 1 6
0 0 1

, · · ·
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The Value of Triangular Matrices

Consider the following 3× 3 lower triangular linear system: x1 = 1
2x1 + 3x2 = −1
4x1 + 5x2 + 6x3 = 11

⇐⇒ [A|b], where A =

 1 0 0
2 3 0
4 5 6


Then the soln can be found by a forward-solve (AKA forward substitution):

x1 = 1 =⇒ x1 = 1
2x1 + 3x2 = −1 =⇒ 2(1) + 3x2 = −1 =⇒ x2 = −1

4x1 + 5x2 + 6x3 = 11 =⇒ 4(1) + 5(−1) + 6x3 = 11 =⇒ x3 = 2

The cases where the lower triangular linear system has no soln or infinitely
many solns can also be handled with little trouble by a forward-solve.

Having said that, for this section (LARSON 2.4), only linear systems with a
unique solution will be considered.

Josh Engwer (TTU) Solving Ax = b w/ different b’s: LU-Factorization 14 September 2015 14 / 21



The Value of Triangular Matrices

Consider the following 3× 3 upper triangular linear system: x1 + 2x2 + 3x3 = 3
4x2 + 5x3 = 10

6x3 = 12
⇐⇒ [A|b], where A =

 1 2 3
0 4 5
0 0 6


Then the solution can be found by a back-solve (AKA back substitution):

6x3 = 12 =⇒ x3 = 12/6 =⇒ x3 = 2
4x2 + 5x3 = 10 =⇒ 4x2 + 5(2) = 10 =⇒ x2 = 0

x1 + 2x2 + 3x3 = 3 =⇒ x1 + 2(0) + 3(2) = 3 =⇒ x1 = −3

The cases where the upper triangular linear system has no soln or infinitely
many solns can also be handled with little trouble by a back-solve.

Having said that, for this section (LARSON 2.4), only linear systems with a
unique solution will be considered.
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LU-Factorization of a Matrix (Procedure)

There are times in Linear Algebra where factoring a matrix is quite useful.
Here is the first such instance:

Proposition
(LU-Factorization of a Matrix)

GIVEN: m× n matrix A where no row swaps are necessary.

TASK: Form A = LU, (L is square unit lower triangular & U is upper triangular)

(1) COMBINE to zero-out an entry below main diagonal: [αRi + Rj → Rj]
(2) Form m× m elementary matrix corresponding to COMBINE operation: E
(3) Find the inverse of the elementary matrix: E−1

(4) Repeat steps (1)-(3) for all such entries, top-to-bottom, left-to-right
(5) Resulting matrix is upper triangular: U = EkEk−1 · · ·E3E2E1A
(6) Determine L: EkEk−1 · · ·E2E1A = U =⇒ A = E−1

1 E−1
2 · · ·E

−1
k−1E−1

k︸ ︷︷ ︸
L

U
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Products of Inverses of COMBINE Elem. Matrices
Products of inverses of COMBINE elementary matrices can be found instantly:

Proposition
(Products of Inverses of COMBINE Elementary Matrices)

Let E1,E2, · · · ,Ek−1,Ek be n× n COMBINE elementary matrices.

Then the n× n matrix product E−1
1 E−1

2 · · ·E
−1
k−1E−1

k is simply the unit lower
triangular matrix with each entry below the main diagonal being the
corresponding single non-zero entry in one of the inverse elementary
matrices.

Let E1 =

 1 0 0
3 1 0
0 0 1

, E2 =

 1 0 0
0 1 0
−2 0 1

, E3 =

 1 0 0
0 1 0
0 −8 1

 Then:

E−1
1 E−1

2 E−1
3 =

 1 0 0
−3 1 0

0 0 1

 1 0 0
0 1 0
2 0 1

 1 0 0
0 1 0
0 8 1

 =

 1 0 0
−3 1 0

2 8 1


The product E3E2E1 is not obvious: E3E2E1 =

 1 0 0
3 1 0

−26 −8 1
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Solving Ax = b via LU-Factorization of A

Proposition
(Solving Ax = b via LU-Factorization of A)

GIVEN: m× n linear system Ax = b where no row swaps are necessary.

TASK: Solve linear system via A = LU

(1) Perform LU-Factorization of A (see previous slides)
(2) Notice Ax = b =⇒ (LU)x = b =⇒ L(Ux) = b =⇒ Let y = Ux
(3) Solve square triangular system Ly = b for y via forward-solve
(4) Solve triangular system Ux = y for x

If U is square, solve Ux = y via back-solve
If U is non-square, solve Ux = y via Gauss-Jordan Elimination

REMARK: Here, Ax = b will always be square & have a unique solution.
The reason being most applications lead to square linear systems with unique
solutions. Moreover, most computer algorithms can only handle square linear
systems with a unique solution. Finally, using A = LU is preferable to
computing A−1 since it’s too slow & unstable for a computer to invert most
large square matrices. Take Numerical Linear Algebra for the details.
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Solving Ax = b with different b’s via A = LU

A = LU is efficient when solving several linear systems with the same matrix A
and different RHS b’s since A = LU only has to be computed once:

Ax = b1 =⇒ L(Ux) = b1 =⇒ Solve Ly1 = b1 =⇒ Solve Ux = y1
Ax = b2 =⇒ L(Ux) = b2 =⇒ Solve Ly2 = b2 =⇒ Solve Ux = y2
Ax = b3 =⇒ L(Ux) = b3 =⇒ Solve Ly3 = b3 =⇒ Solve Ux = y3
Ax = b4 =⇒ L(Ux) = b4 =⇒ Solve Ly4 = b4 =⇒ Solve Ux = y4
...

...
...

...

If A is square, computing A = LU is more efficient than computing A−1.
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Solving Ax = b via LU-Factorization of A (Example)

WEX 2-4-1: Let A =

[
1 2
3 4

]
.

(a) Find the LU-Factorization for A

A
(−3)R1+R2→R2−−−−−−−−−→

[
1 2
0 −2

]
=⇒ E1 =

[
1 0
−3 1

]
=⇒ E−1

1 =

[
1 0
3 1

]
=⇒ E1A =

[
1 2
0 −2

]
= U =⇒ A = E−1

1 U =⇒ L = E−1
1 =

[
1 0
3 1

]

∴ A = LU ⇐⇒
[

1 2
3 4

]
=

[
1 0
3 1

] [
1 2
0 −2

]

(b) Use A = LU to solve linear system Ax = b, where b =

[
1
−1

]
Ly = b =⇒

{
y1 = 1
3y1 + y2 = −1

Forward-Solve−−−−−−−−→
[

y1
y2

]
=

[
1
−4

]
Ux = y =⇒

{
x1 + 2x2 = 1
− 2x2 = −4

Back-Solve−−−−−−→
[

x1
x2

]
=

[
−3

2

]
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Fin

Fin.
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