Determinants: Intro \& Cofactor Expansions

Linear Algebra

Josh Engwer

TTU

21 September 2015

Determinant of a Square Matrix (Motivation)

Consider the prototype 2×2 square linear system $A \mathbf{x}=\mathbf{b}$:

$$
\left\{\begin{array}{l}
a_{11} x_{1}+a_{12} x_{2}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}=b_{2}
\end{array} \Longleftrightarrow A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\right.
$$

Moreover, let $a_{11}, \cdots, a_{22}, b_{1}, b_{2}$ be chosen s.t. there's a unique solution.
Then $\left[\begin{array}{c}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}\frac{b_{1} a_{22}-b_{2} a_{12}}{a_{1} a_{21}-a_{21}-a_{12}} \\ \frac{b_{12} a_{11}-a_{12}}{a_{11} a_{22}-a_{21} a_{12}}\end{array}\right]=\frac{1}{a_{11} a_{22}-a_{21} a_{12}}\left[\begin{array}{l}b_{1} a_{22}-b_{2} a_{12} \\ b_{2} a_{11}-b_{1} a_{21}\end{array}\right]$
Notice that the denominators of $x_{1} \& x_{2}$ only involve the entries of matrix A. Moreover, notice that the denominators of $x_{1} \& x_{2}$ are exactly the same!
This is the case for any $n \times n$ square linear system with a unique solution.
This scalar value comes up so often in Linear Algebra that it has a name:

Definition

(Determinant of a Square Matrix - "First Principles" Definition)
Let linear system $A \mathbf{x}=\mathbf{b}$ be square \& have a unique solution.
Then the denominator of the solution is called the determinant of matrix A.
The determinant of a non-square matrix is undefined.

Determinant of a 2×2 Square Matrix

Solving a particular linear system is alot of work \& it wouldn't be obvious what the common denominator is in the solution.
There's an easier procedure to compute determinants of $n \times n$ matrices.
For 2×2 matrices, there's an extremely quick procedure:

Proposition

(Determinant of a 2×2 Square Matrix)
Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ where $a, b, c, d \in \mathbb{R}$. Then the determinant of A is:

$$
|A| \equiv \operatorname{det}(A):=a d-b c
$$

ALTERNATIVE NOTATION:

a	b	also represents the determinant (not the absolute value.)
c	d	

WEX 3-1-1: $\left|\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right|=(1)(4)-(2)(3)=-2$

Minors \& Cofactors of a Square Matrix

Definition

(Minor \& Cofactors)
Let A be a $n \times n$ square matrix. Then:

- The (i, j)-minor of A, denoted $M_{i j}$, is the determinant of the matrix obtained by removing the $i^{\text {th }}$ row $\& j^{\text {th }}$ column of A.
- The (i, j)-cofactor of A, denoted $C_{i j}$, is $C_{i j}:=(-1)^{i+j} M_{i j}$

For instance, if $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$, then its $(1,1)$-minor $\&(1,1)$-cofactor is:

$$
C_{11}=(-1)^{1+1} M_{11}=(1)\left|\begin{array}{ll}
\mathbf{5} & \mathbf{6} \\
\mathbf{8} & \mathbf{9}
\end{array}\right|=(1)[(5)(9)-(6)(8)]=-3
$$

Minors \& Cofactors of a Square Matrix

Definition

(Minor \& Cofactors)
Let A be a $n \times n$ square matrix. Then:

- The (i, j)-minor of A, denoted $M_{i j}$, is the determinant of the matrix obtained by removing the $i^{\text {th }}$ row $\& j^{\text {th }}$ column of A.
- The (i, j)-cofactor of A, denoted $C_{i j}$, is $C_{i j}:=(-1)^{i+j} M_{i j}$

For instance, if $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$, then its $(1,2)$-minor $\&(1,2)$-cofactor is:

$$
C_{12}=(-1)^{1+2} M_{12}=(-1)\left|\begin{array}{ll}
\mathbf{4} & \mathbf{6} \\
\mathbf{7} & \mathbf{9}
\end{array}\right|=(-1)[(4)(9)-(6)(7)]=6
$$

Minors \& Cofactors of a Square Matrix

Definition

(Minor \& Cofactors)
Let A be a $n \times n$ square matrix. Then:

- The (i, j)-minor of A, denoted $M_{i j}$, is the determinant of the matrix obtained by removing the $i^{\text {th }}$ row $\& j^{\text {th }}$ column of A.
- The (i, j)-cofactor of A, denoted $C_{i j}$, is $C_{i j}:=(-1)^{i+j} M_{i j}$

For instance, if $A=\left[\begin{array}{lll}1 & 2 & 3 \\ \mathbf{4} & 5 & 6 \\ \mathbf{7} & \mathbf{8} & 9\end{array}\right]$, then its $(1,3)$-minor \& $(1,3)$-cofactor is:

$$
C_{13}=(-1)^{1+3} M_{13}=(1)\left|\begin{array}{ll}
\mathbf{4} & \mathbf{5} \\
\mathbf{7} & \mathbf{8}
\end{array}\right|=(1)[(4)(8)-(5)(7)]=-3
$$

Minors \& Cofactors of a Square Matrix

Definition

(Minor \& Cofactors)
Let A be a $n \times n$ square matrix. Then:

- The (i, j)-minor of A, denoted $M_{i j}$, is the determinant of the matrix obtained by removing the $i^{\text {th }}$ row $\& j^{\text {th }}$ column of A.
- The (i, j)-cofactor of A, denoted $C_{i j}$, is $C_{i j}:=(-1)^{i+j} M_{i j}$

For instance, if $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$, then its $(2,1)$-minor $\&(2,1)$-cofactor is:

$$
C_{21}=(-1)^{2+1} M_{21}=(-1)\left|\begin{array}{ll}
\mathbf{2} & \mathbf{3} \\
\mathbf{8} & \mathbf{9}
\end{array}\right|=(-1)[(2)(9)-(3)(8)]=6
$$

Minors \& Cofactors of a Square Matrix

Definition

(Minor \& Cofactors)
Let A be a $n \times n$ square matrix. Then:

- The (i, j)-minor of A, denoted $M_{i j}$, is the determinant of the matrix obtained by removing the $i^{\text {th }}$ row $\& j^{\text {th }}$ column of A.
- The (i, j)-cofactor of A, denoted $C_{i j}$, is $C_{i j}:=(-1)^{i+j} M_{i j}$

For instance, if $A=\left[\begin{array}{lll}\mathbf{1} & 2 & 3 \\ 4 & 5 & 6 \\ \mathbf{7} & 8 & \mathbf{9}\end{array}\right]$, then its $(2,2)$-minor $\&(2,2)$-cofactor is:

$$
C_{22}=(-1)^{2+2} M_{22}=(1)\left|\begin{array}{ll}
\mathbf{1} & \mathbf{3} \\
\mathbf{7} & \mathbf{9}
\end{array}\right|=(1)[(1)(9)-(3)(7)]=-12
$$

Minors \& Cofactors of a Square Matrix

Definition

(Minor \& Cofactors)
Let A be a $n \times n$ square matrix. Then:

- The (i, j)-minor of A, denoted $M_{i j}$, is the determinant of the matrix obtained by removing the $i^{\text {th }}$ row $\& j^{\text {th }}$ column of A.
- The (i, j)-cofactor of A, denoted $C_{i j}$, is $C_{i j}:=(-1)^{i+j} M_{i j}$

For instance, if $A=\left[\begin{array}{lll}\mathbf{1} & \mathbf{2} & 3 \\ 4 & 5 & 6 \\ \mathbf{7} & \mathbf{8} & 9\end{array}\right]$, then its $(2,3)$-minor $\&(2,3)$-cofactor is:

$$
C_{23}=(-1)^{2+3} M_{23}=(-1)\left|\begin{array}{ll}
\mathbf{1} & \mathbf{2} \\
\mathbf{7} & \mathbf{8}
\end{array}\right|=(-1)[(1)(8)-(2)(7)]=6
$$

Minors \& Cofactors of a Square Matrix

Definition

(Minor \& Cofactors)
Let A be a $n \times n$ square matrix. Then:

- The (i, j)-minor of A, denoted $M_{i j}$, is the determinant of the matrix obtained by removing the $i^{\text {th }}$ row $\& j^{\text {th }}$ column of A.
- The (i, j)-cofactor of A, denoted $C_{i j}$, is $C_{i j}:=(-1)^{i+j} M_{i j}$

For instance, if $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$, then its $(3,1)$-minor $\&(3,1)$-cofactor is:

$$
C_{31}=(-1)^{3+1} M_{31}=(1)\left|\begin{array}{ll}
\mathbf{2} & \mathbf{3} \\
\mathbf{5} & \mathbf{6}
\end{array}\right|=(1)[(2)(6)-(3)(5)]=-3
$$

Minors \& Cofactors of a Square Matrix

Definition

(Minor \& Cofactors)
Let A be a $n \times n$ square matrix. Then:

- The (i, j)-minor of A, denoted $M_{i j}$, is the determinant of the matrix obtained by removing the $i^{\text {th }}$ row $\& j^{\text {th }}$ column of A.
- The (i, j)-cofactor of A, denoted $C_{i j}$, is $C_{i j}:=(-1)^{i+j} M_{i j}$

For instance, if $A=\left[\begin{array}{lll}\mathbf{1} & 2 & 3 \\ \mathbf{4} & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$, then its $(3,2)$-minor $\&(3,2)$-cofactor is:

$$
C_{32}=(-1)^{3+2} M_{32}=(-1)\left|\begin{array}{ll}
\mathbf{1} & \mathbf{3} \\
\mathbf{4} & \mathbf{6}
\end{array}\right|=(-1)[(1)(6)-(3)(4)]=6
$$

Minors \& Cofactors of a Square Matrix

Definition

(Minor \& Cofactors)
Let A be a $n \times n$ square matrix. Then:

- The (i, j)-minor of A, denoted $M_{i j}$, is the determinant of the matrix obtained by removing the $i^{\text {th }}$ row $\& j^{\text {th }}$ column of A.
- The (i, j)-cofactor of A, denoted $C_{i j}$, is $C_{i j}:=(-1)^{i+j} M_{i j}$

For instance, if $A=\left[\begin{array}{lll}\mathbf{1} & \mathbf{2} & 3 \\ \mathbf{4} & \mathbf{5} & 6 \\ 7 & 8 & 9\end{array}\right]$, then its $(3,3)$-minor $\&(3,3)$-cofactor is:

$$
C_{33}=(-1)^{3+3} M_{33}=(1)\left|\begin{array}{ll}
\mathbf{1} & \mathbf{2} \\
\mathbf{4} & \mathbf{5}
\end{array}\right|=(1)[(1)(5)-(2)(4)]=-3
$$

Determinant of $n \times n$ Matrix via Cofactor Expansion

Theorem

(Determinant via Cofactor Expansion)
Let A be a $n \times n$ square matrix. Then:

$$
\begin{aligned}
& \operatorname{det}(A)=\sum_{k=1}^{n} a_{i k} C_{i k}=a_{i 1} C_{i 1}+a_{i 2} C_{i 2}+\cdots+a_{i n} C_{i n} \quad \text { (ith row expansion) } \\
& \operatorname{det}(A)=\sum_{k=1}^{n} a_{k j} C_{k j}=a_{1 j} C_{1 j}+a_{2 j} C_{2 j}+\cdots+a_{n j} C_{n j} \quad \text { (} j^{\text {th }} \text { column expansion) }
\end{aligned}
$$

WEX 3-1-2: Find the determinant of $A=\left[\begin{array}{lll}\mathbf{0} & \mathbf{2} & \mathbf{1} \\ 4 & 3 & 3 \\ 1 & 1 & 2\end{array}\right]$.

$$
\begin{aligned}
|A| & =(\mathbf{0}) C_{11}+(\mathbf{2}) C_{12}+(\mathbf{1}) C_{13} \\
& \left.=(-1)^{1+1}(0)\left|\begin{array}{cc}
3 & 3 \\
1 & 2
\end{array}\right|+(-1)^{1+2}(2)\left|\begin{array}{cc}
4 & 3 \\
1 & 2
\end{array}\right|+(-1)^{1+3}(1) \right\rvert\, \begin{array}{cc}
4 & 3 \\
1 & 1 \\
& =0+(-2)[(4)(2)-(3)(1)]+(1)[(4)(1)-(3)(1)] \\
& =-9
\end{array}
\end{aligned}
$$

Determinant of $n \times n$ Matrix via Cofactor Expansion

Theorem

(Determinant via Cofactor Expansion)
Let A be a $n \times n$ square matrix. Then:

$$
\begin{aligned}
& \operatorname{det}(A)=\sum_{k=1}^{n} a_{i k} C_{i k}=a_{i 1} C_{i 1}+a_{i 2} C_{i 2}+\cdots+a_{i n} C_{i n} \quad \text { (ith row expansion) } \\
& \operatorname{det}(A)=\sum_{k=1}^{n} a_{k j} C_{k j}=a_{1 j} C_{1 j}+a_{2 j} C_{2 j}+\cdots+a_{n j} C_{n j} \quad \text { (} j^{\text {th }} \text { column expansion) }
\end{aligned}
$$

WEX 3-1-2: Find the determinant of $A=\left[\begin{array}{lll}\mathbf{0} & 2 & 1 \\ \mathbf{4} & 3 & 3 \\ \mathbf{1} & 1 & 2\end{array}\right]$.

$$
\begin{aligned}
& |A|=(\mathbf{0}) C_{11}+(\mathbf{4}) C_{21}+(\mathbf{1}) C_{31} \\
& =(-1)^{1+1}(0)\left|\begin{array}{ll}
3 & 3 \\
1 & 2
\end{array}\right|+(-1)^{2+1}(4)\left|\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right|+(-1)^{3+1}(1)\left|\begin{array}{ll}
2 & 1 \\
3 & 3
\end{array}\right| \\
& =0+(-4)[(2)(2)-(1)(1)]+(1)[(2)(3)-(1)(3)] \\
& =-9
\end{aligned}
$$

Determinant of $n \times n$ Matrix via Cofactor Expansion

Theorem

(Determinant via Cofactor Expansion)
Let A be a $n \times n$ square matrix. Then:

$$
\begin{aligned}
& \operatorname{det}(A)=\sum_{k=1}^{n} a_{i k} C_{i k}=a_{i 1} C_{i 1}+a_{i 2} C_{i 2}+\cdots+a_{i n} C_{i n} \quad \text { (ith row expansion) } \\
& \operatorname{det}(A)=\sum_{k=1}^{n} a_{k j} C_{k j}=a_{1 j} C_{1 j}+a_{2 j} C_{2 j}+\cdots+a_{n j} C_{n j} \quad \text { (} j^{\text {th }} \text { column expansion) }
\end{aligned}
$$

WEX 3-1-2: Find the determinant of $A=\left[\begin{array}{lll}0 & 2 & 1 \\ \mathbf{4} & 3 & 3 \\ 1 & 1 & 2\end{array}\right]$.

$$
\begin{aligned}
|A| & =(\mathbf{4}) C_{21}+(\mathbf{3}) C_{22}+(\mathbf{3}) C_{23} \\
& =(-1)^{2+1}(4)\left|\begin{array}{cc}
2 & 1 \\
1 & 2
\end{array}\right|+(-1)^{2+2}(3)\left|\begin{array}{cc}
0 & 1 \\
1 & 2
\end{array}\right|+(-1)^{2+3}(3)\left|\begin{array}{cc}
0 & 2 \\
1 & 1
\end{array}\right| \\
& =(-4)[(2)(2)-(1)(1)]+(3)[(0)(2)-(1)(1)]+(-3)[(0)(1)-(2)(1)] \\
& =-9
\end{aligned}
$$

Determinant of $n \times n$ Matrix via Cofactor Expansion

Theorem

(Determinant via Cofactor Expansion)
Let A be a $n \times n$ square matrix. Then:

$$
\begin{aligned}
& \operatorname{det}(A)=\sum_{k=1}^{n} a_{i k} C_{i k}=a_{i 1} C_{i 1}+a_{i 2} C_{i 2}+\cdots+a_{i n} C_{i n} \quad \text { (ith row expansion) } \\
& \operatorname{det}(A)=\sum_{k=1}^{n} a_{k j} C_{k j}=a_{1 j} C_{1 j}+a_{2 j} C_{2 j}+\cdots+a_{n j} C_{n j} \quad \text { (} j^{\text {th }} \text { column expansion) }
\end{aligned}
$$

WEX 3-1-2: Find the determinant of $A=\left[\begin{array}{lll}0 & 2 & \mathbf{1} \\ 4 & 3 & 3 \\ 1 & 1 & 2\end{array}\right]$.

$$
\begin{aligned}
|A| & =(\mathbf{1}) C_{13}+(\mathbf{3}) C_{23}+(\mathbf{2}) C_{33} \\
& =(-1)^{1+3}(1)\left|\begin{array}{cc}
4 & 3 \\
1 & 1
\end{array}\right|+(-1)^{2+3}(3)\left|\begin{array}{cc}
0 & 2 \\
1 & 1
\end{array}\right|+(-1)^{3+3}(2)\left|\begin{array}{cc}
0 & 2 \\
4 & 3
\end{array}\right| \\
& =(1)[(4)(1)-(3)(1)]+(-3)[(0)(1)-(2)(1)]+(2)[(0)(3)-(2)(4)] \\
& =-9
\end{aligned}
$$

Sparse \& Dense Matrices

Definition

(Sparse Matrix)
A sparse matrix has at least several zeros.
REMARK: Elementary, triangular and diagonal matrices are sparse matrices.
Sparse Matrices: $\left[\begin{array}{llll}0 & 2 & 0 & 4 \\ 5 & 0 & 7 & 0 \\ 0 & 6 & 7 & 0 \\ 1 & 0 & 0 & 0\end{array}\right],\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 0 & 7 & 8 \\ 3 & 6 & 7 & 0 \\ 8 & 5 & 0 & 1\end{array}\right]$

Definition

(Dense Matrix)
A dense matrix has at most a couple zeros.
Dense Matrices: $\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 3 & 6 & 7 & 2 \\ 1 & 1 & 1 & 1\end{array}\right],\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 3 & 6 & 7 & 2 \\ 8 & 5 & 0 & 1\end{array}\right]$

Determinant of a Sparse Matrix

Cofactor Expansions are efficient for determinants of sparse matrices. It's best to expand along the row or column with the most zeros:
WEX 3-1-3: Find the determinant of $A=\left[\begin{array}{rrrr}-2 & 0 & 5 & 0 \\ 0 & 6 & 4 & 2 \\ 0 & 0 & 0 & 8 \\ 1 & 0 & -3 & -3\end{array}\right]$

$$
\begin{array}{rlrl}
|A| & =(0) C_{31}+(0) C_{32}+(0) C_{33}+(8) C_{34} & & \text { (Cofactor Exp along row } 3 \text { of } A) \\
& =(-1)^{3+4}(8)\left|\begin{array}{rrr}
-2 & 0 & 5 \\
0 & 6 & 4 \\
1 & 0 & -3
\end{array}\right| \\
& =(-8)\left[0+(6)(-1)^{2+2}\left|\begin{array}{rr}
-2 & 5 \\
1 & -3
\end{array}\right|\right] & \\
& =(-8)(6)[(-2)(-3)-(5)(1)] & & \\
& =-48 & & \\
& \text { (Detactor Exp of } 2 \times 2 \text { matrix formula) } \\
& &
\end{array}
$$

Cofactor Expansions of $n \times n$ dense matrices ($n \geq 4$) take far too much work! A better method for dense matrices to be shown next section (LARSON 3.2)

Determinant of a Triangular Matrix

For triangular matrices, their determinants are straightforward to find:

Theorem

(Determinant of a Triangular Matrix)
Let A be a $n \times n$ triangular matrix. Then, $\operatorname{det}(A)=a_{11} a_{22} a_{33} \cdots a_{n n}$
i.e. determinant of a triangular matrix is the product of the diagonal entries.

WEX 3-1-4: Find the determinant of $A=\left[\begin{array}{rrrr}1 & 2 & 0 & -2 \\ 0 & -3 & -4 & 4 \\ 0 & 0 & 5 & 9 \\ 0 & 0 & 0 & -1\end{array}\right]$.
$\operatorname{det}(A)=a_{11} a_{22} a_{33} a_{44}=(1)(-3)(5)(-1)=15$

Fin.

