# Determinants: Elementary Row/Column Operations <br> <br> Linear Algebra 

 <br> <br> Linear Algebra}

Josh Engwer

TTU
23 September 2015

## Elementary Row Operations \& Determinants

## Theorem

(Elementary Row Operations \& Determinants)
Recall the elementary row operations:
(SWAP) $\quad\left[R_{i} \leftrightarrow R_{j}\right] \quad$ Swap row $i \&$ row $j$
(SCALE) $\quad\left[\alpha R_{j} \rightarrow R_{j}\right] \quad$ Multiply row $j$ by a non-zero scalar $\alpha$
(COMBINE) $\left[\alpha R_{i}+R_{j} \rightarrow R_{j}\right] \quad$ Add scalar multiple $\alpha$ of row $i$ to row $j$
Let $A, B$ be $n \times n$ square matrices. Then:

| (ROW SWAP) | If $A$ | $\xrightarrow{R_{i} \leftrightarrow R_{j}}$ | $B$, then $\operatorname{det}(B)=-\operatorname{det}(A)$ |
| :---: | :---: | :---: | :---: |
| (ROW SCALE) | If $A$ | $\xrightarrow{\alpha R_{j} \rightarrow R_{j}}$ | $B$, then $\operatorname{det}(B)=\operatorname{det}(A)$ |
| (ROW COMBINE) | If $A$ | $\xrightarrow{\alpha R_{i}+R_{j} \rightarrow R_{j}}$ | $B$, then $\operatorname{det}(B)=\operatorname{det}(A)$ |

i.e. Performing a row swap causes the determinant to change sign.
i.e. Performing a row scale by $\alpha$ causes the determinant to multiplied by $\alpha$.
i.e. Performing a row combine causes the determinant to remain the same.

PROOF: Requires proof-by-induction - see the textbook if interested.

## Elementary Column Operations \& Determinants

## Theorem

(Elementary Column Operations \& Determinants)
Recall the elementary column operations:
(SWAP) $\quad\left[C_{i} \leftrightarrow C_{j}\right] \quad$ Swap column $i \&$ row $j$
(SCALE) $\quad\left[\alpha C_{j} \rightarrow C_{j}\right] \quad$ Multiply column $j$ by a non-zero scalar $\alpha$ (COMBINE) $\left[\alpha C_{i}+C_{j} \rightarrow C_{j}\right] \quad$ Add scalar multiple $\alpha$ of column $i$ to column $j$ Let $A, B$ be $n \times n$ square matrices. Then:

| (COLUMN SWAP) | If $A$ | $\xrightarrow{C_{i} \leftrightarrow C_{j}}$ | $B$, then $\operatorname{det}(B)=-\operatorname{det}(A)$ |
| :---: | :---: | :---: | :---: | :---: |
| (COLUMN SCALE) | If $A$ | $\xrightarrow{\alpha C_{j} \rightarrow C_{j}}$ | $B$, then $\operatorname{det}(B)=\alpha \operatorname{det}(A)$ |
| (COLUMN COMBINE) | If $A$ | $\xrightarrow{\alpha C_{i}+C_{j} \rightarrow C_{j}}$ | $B$, then $\operatorname{det}(B)=\operatorname{det}(A)$ |

i.e. Performing a column swap causes the determinant to change sign.
i.e. Performing a column scale by $\alpha$ causes determinant to multiplied by $\alpha$.
i.e. Performing a column combine causes determinant to remain the same.

PROOF: Requires proof-by-induction - see the textbook if interested.

## Elem. Row Operations \& Determinants (Examples)

(ROW SWAP) $\left|\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right| \quad \xrightarrow{R_{2} \leftrightarrow R_{3}} \quad(-1)\left|\begin{array}{lll}1 & 2 & 3 \\ 7 & 8 & 9 \\ 4 & 5 & 6\end{array}\right|$
(ROW SCALE) $\left|\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right| \quad \xrightarrow{(4) R_{2} \rightarrow R_{2}} \quad\left(\frac{1}{4}\right)\left|\begin{array}{ccc}1 & 2 & 3 \\ 16 & 20 & 24 \\ 7 & 8 & 9\end{array}\right|$
(ROW COMBINE) $\left|\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right| \xrightarrow{(-3) R_{1}+R_{3} \rightarrow R_{3}} \quad\left|\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 4 & 2 & 0\end{array}\right|$

## Elem. Col Operations \& Determinants (Examples)

(COLUMN SWAP) $\left|\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right| \quad \xrightarrow{C_{2} \leftrightarrow C_{3}} \quad(-1)\left|\begin{array}{lll}1 & 3 & 2 \\ 4 & 6 & 5 \\ 7 & 9 & 8\end{array}\right|$
(COLUMN SCALE) $\left|\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right| \quad \xrightarrow{(4) C_{2} \rightarrow C_{2}} \quad\left(\frac{1}{4}\right)\left|\begin{array}{ccc}1 & 8 & 3 \\ 4 & 20 & 6 \\ 7 & 32 & 9\end{array}\right|$
(COLUMN COMBINE) $\left|\begin{array}{ccc}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right| \xrightarrow{(-3) C_{1}+C_{3} \rightarrow C_{3}}\left|\begin{array}{ccc}1 & 2 & 0 \\ 4 & 5 & -6 \\ 7 & 8 & -12\end{array}\right|$

## Row-Equivalent Matrices \& Determinants

## Definition

(Row-Equivalent Matrices)
Let $A, B$ be $m \times n$ matrices.
Then $A$ and $B$ are row-equivalent if $B$ can be obtained from $A$ by elementary row operations.

Since performing elementary row operations causes the determinant to be multiplied by a scalar, it follows that the determinants of two row-equivalent matrices differ by a scalar multiple:

## Corollary

(Determinants of Row-Equivalent Matrices)
Let $A, B$ be $n \times n$ square matrices.
Then if $A$ and $B$ are row-equivalent, then $\operatorname{det}(B)=\beta \operatorname{det}(A)$ for some $\beta \neq 0$.

## Column-Equivalent Matrices \& Determinants

## Definition

(Column-Equivalent Matrices)
Let $A, B$ be $m \times n$ matrices.
Then $A$ and $B$ are column-equivalent if $B$ can be obtained from $A$ by elementary column operations.

Since performing elementary column operations causes the determinant to be multiplied by a scalar, it follows that the determinants of two column-equivalent matrices differ by a scalar multiple:

## Corollary

(Determinants of Column-Equivalent Matrices)
Let $A, B$ be $n \times n$ square matrices.
Then if $A$ and $B$ are column-equivalent, then $\operatorname{det}(B)=\beta \operatorname{det}(A)$ for some $\beta \neq 0$.

## Matrices with a Zero Determinant

## Theorem

(Conditions that yield a Zero Determinant)
Let $A$ be a $n \times n$ square matrix. Then:
(Z1) If an entire row of $A$ consists of all zeros, then $\operatorname{det}(A)=0$
(Z2) If an entire column of $A$ consists of all zeros, then $\operatorname{det}(A)=0$
(Z3) If two rows of $A$ are equal, then $\operatorname{det}(A)=0$
(Z4) If two columns of $A$ are equal, then $\operatorname{det}(A)=0$
(Z5) If one row of $A$ is a multiple of another row of $A$, then $\operatorname{det}(A)=0$
(Z6) If one column of $A$ is a multiple of another column of $A$, $\operatorname{then} \operatorname{det}(A)=0$
$\left|\begin{array}{lll}1 & 2 & 3 \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{7} & 8 & 9\end{array}\right| \stackrel{Z 1}{=} 0,\left|\begin{array}{lll}1 & 2 & \mathbf{0} \\ 4 & 5 & \mathbf{0} \\ \mathbf{7} & 8 & \mathbf{0}\end{array}\right| \stackrel{Z 2}{=} 0,\left|\begin{array}{lll}\mathbf{1} & \mathbf{2} & \mathbf{3} \\ \mathbf{1} & \mathbf{2} & \mathbf{3} \\ \mathbf{7} & 8 & 9\end{array}\right| \stackrel{Z 3}{=} 0,\left|\begin{array}{lll}1 & \mathbf{2} & \mathbf{2} \\ 4 & \mathbf{5} & \mathbf{5} \\ \mathbf{7} & \mathbf{8} & \mathbf{8}\end{array}\right| \stackrel{Z 4}{=} 0$
$\left|\begin{array}{lll}\mathbf{1} & \mathbf{2} & \mathbf{3} \\ \mathbf{2} & \mathbf{4} & \mathbf{6} \\ \mathbf{7} & 8 & \mathbf{9}\end{array}\right| \stackrel{Z 5}{=} 0,\left|\begin{array}{lll}1 & \mathbf{2} & \mathbf{1 0} \\ \mathbf{4} & \mathbf{5} & \mathbf{2 5} \\ \mathbf{7} & \mathbf{8} & \mathbf{4 0}\end{array}\right| \stackrel{Z 6}{=} 0$

## Matrices with a Zero Determinant

## Theorem

(Conditions that yield a Zero Determinant)
Let $A$ be a $n \times n$ square matrix. Then:
(Z1) If an entire row of $A$ consists of all zeros, then $\operatorname{det}(A)=0$
(Z2) If an entire column of $A$ consists of all zeros, then $\operatorname{det}(A)=0$
(Z3) If two rows of $A$ are equal, then $\operatorname{det}(A)=0$
(Z4) If two columns of $A$ are equal, then $\operatorname{det}(A)=0$
(Z5) If one row of $A$ is a multiple of another row of $A$, then $\operatorname{det}(A)=0$
(Z6) If one column of $A$ is a multiple of another column of $A$, $\operatorname{then} \operatorname{det}(A)=0$

## PROOF: (WLOG $\equiv$ "Without Loss Of Generality")

(Z1): WLOG, let the $k^{\text {th }}$ row of $A$ consist of all zeros. Then:
$|A|=a_{k 1} C_{k 1}+a_{k 2} C_{k 2}+\cdots+a_{k n} C_{k n}$
$=(0) C_{k 1}+(0) C_{k 2}+\cdots+(0) C_{k n}$
$=0$

QED

## Matrices with a Zero Determinant

## Theorem

(Conditions that yield a Zero Determinant)
Let $A$ be a $n \times n$ square matrix. Then:
(Z1) If an entire row of $A$ consists of all zeros, then $\operatorname{det}(A)=0$
(Z2) If an entire column of $A$ consists of all zeros, then $\operatorname{det}(A)=0$
(Z3) If two rows of $A$ are equal, then $\operatorname{det}(A)=0$
(Z4) If two columns of $A$ are equal, then $\operatorname{det}(A)=0$
(Z5) If one row of $A$ is a multiple of another row of $A$, then $\operatorname{det}(A)=0$
(Z6) If one column of $A$ is a multiple of another column of $A$, $\operatorname{then} \operatorname{det}(A)=0$

## PROOF: (WLOG $\equiv$ "Without Loss Of Generality")

(Z2): WLOG, let the $k^{\text {th }}$ column of $A$ consist of all zeros. Then:

$$
\begin{aligned}
|A| & =a_{1 k} C_{1 k}+a_{2 k} C_{2 k}+\cdots+a_{n k} C_{n k} \\
& =(0) C_{1 k}+(0) C_{2 k}+\cdots+(0) C_{n k} \\
& =0
\end{aligned}
$$

## Matrices with a Zero Determinant

## Theorem

(Conditions that yield a Zero Determinant)
Let $A$ be a $n \times n$ square matrix. Then:
(Z1) If an entire row of $A$ consists of all zeros, then $\operatorname{det}(A)=0$
(Z2) If an entire column of $A$ consists of all zeros, then $\operatorname{det}(A)=0$
(Z3) If two rows of $A$ are equal, then $\operatorname{det}(A)=0$
(Z4) If two columns of $A$ are equal, then $\operatorname{det}(A)=0$
(Z5) If one row of $A$ is a multiple of another row of $A$, then $\operatorname{det}(A)=0$
(Z6) If one column of $A$ is a multiple of another column of $A$, $\operatorname{then} \operatorname{det}(A)=0$
PROOF: $\quad$ (WLOG $\equiv$ "Without Loss Of Generality")
(Z4): WLOG, let columns $i \& j$ of $A$ be equal.
Then $A \xrightarrow{(-1) C_{i}+C_{j} \rightarrow C_{j}} B$
$\Longrightarrow$ column $j$ of $B$ consists of all zeros $\xlongequal{Z 2} \operatorname{det}(B)=0$.
Since $A, B$ are column-equivalent, $\operatorname{det}(A)=\beta \operatorname{det}(B)=(\beta)(0)=0$. QED

## Matrices with a Zero Determinant

## Theorem

(Conditions that yield a Zero Determinant)
Let $A$ be a $n \times n$ square matrix. Then:
(Z1) If an entire row of $A$ consists of all zeros, then $\operatorname{det}(A)=0$
(Z2) If an entire column of $A$ consists of all zeros, then $\operatorname{det}(A)=0$
(Z3) If two rows of $A$ are equal, then $\operatorname{det}(A)=0$
(Z4) If two columns of $A$ are equal, then $\operatorname{det}(A)=0$
(Z5) If one row of $A$ is a multiple of another row of $A$, then $\operatorname{det}(A)=0$
(Z6) If one column of $A$ is a multiple of another column of $A$, then $\operatorname{det}(A)=0$
PROOF: $\quad$ WLOG $\equiv$ "Without Loss Of Generality")
(Z5): WLOG, let $\alpha \neq 0$ and (row $j$ of $A)=\alpha \times($ row $i$ of $A)$.
Then $A \xrightarrow{(-\alpha) R_{i}+R_{j} \rightarrow R_{j}} B$
$\Longrightarrow$ row $j$ of $B$ consists of all zeros $\xlongequal{Z 1} \operatorname{det}(B)=0$.
Since $A, B$ are row-equivalent, $\operatorname{det}(A)=\beta \operatorname{det}(B)=(\beta)(0)=0$. QED

## Finding Determinants via Elem Row/Col Operations

Since the determinant of a triangular matrix is simply the product of its main diagonal entries, it's best to row/column-reduce a dense matrix down to a triangular matrix.

If in the process the matrix reduces to a matrix with a row or column consisting of all zeros, then the determinant is zero:

## Proposition

(Finding Determinants via Elementary Row/Column Operations)
GIVEN: $n \times n$ square dense matrix $A$
TASK: Find the determinant of $A$
(1) Perform elem. row or column op's until one of the following is attained:

- A matrix with a row or column of all zeros (whose determinant is zero)
- A triangular matrix (whose determinant is product of main diagonal)
( $\star$ ) Keep track of each scalar factor resulting from a SWAP or SCALE row op.
( $\star$ ) It's best to use only row ops - column ops will never be used again.


## Finding Determinants via Elem Row/Col Operations

WEX 3-2-1: Find the determinant of $A=\left[\begin{array}{ccc}2 & 4 & 8 \\ 3 & 5 & 5 \\ 10 & 20 & 50\end{array}\right]$.
$\left|\begin{array}{ccc}2 & 4 & 8 \\ 3 & 5 & 5 \\ 10 & 20 & 50\end{array}\right| \xrightarrow{(-5) R_{1}+R_{3} \rightarrow R_{3}}\left|\begin{array}{ccc}2 & 4 & 8 \\ 3 & 5 & 5 \\ 0 & 0 & 10\end{array}\right| \xrightarrow{\left(\frac{1}{2}\right) R_{1} \rightarrow R_{1}}(2)\left|\begin{array}{lll}1 & 2 & 4 \\ 3 & 5 & 5 \\ 0 & 0 & 10\end{array}\right|$
$\xrightarrow{(-3) R_{1}+R_{2} \rightarrow R_{2}}(2)\left|\begin{array}{rrr}1 & 2 & 4 \\ 0 & -1 & -7 \\ 0 & 0 & 10\end{array}\right|=(2)[(1)(-1)(10)]=-20$

WEX 3-2-2: Find the determinant of $A=\left[\begin{array}{ccc}2 & 4 & 8 \\ 3 & 3 & 12 \\ 10 & 20 & 40\end{array}\right]$.

$$
\left|\begin{array}{ccc}
2 & 4 & 8 \\
3 & 3 & 12 \\
10 & 20 & 40
\end{array}\right| \xrightarrow{(-4) C_{1}+C_{3} \rightarrow C_{3}}\left|\begin{array}{ccc}
2 & 4 & 0 \\
3 & 3 & 0 \\
10 & 20 & 0
\end{array}\right| \stackrel{Z 2}{=} 0
$$

## Cofactor Expansions vs. Elem Row/Col Operations

For large $n \times n$ square dense matrices ( $n \geq 4$ ), elementary row operations require far less work than a cofactor expansion:

|  | COFACTOR EXPANSION |  | ELEM. ROW OPERATIONS |  |
| :---: | :---: | :---: | :---: | :---: |
| $n$ | ADDITIONS | MULTIPLICATIONS | ADDITIONS | MULTIPLICATIONS |
| 2 | 1 | 2 | 1 | 3 |
| 3 | 5 | 9 | 5 | 10 |
| 4 | 23 | 40 | 14 | 23 |
| 5 | 119 | 205 | 30 | 44 |
| $\vdots$ | $\vdots$ | $\vdots$ | $\vdots$ | $\vdots$ |
| 10 | $3,628,799$ | $6,235,300$ | 285 | 339 |

Even for computers, finding $10 \times 10$ determinants are significantly faster using elementary row operations!

## Fin.

