Determinants: Products, Inverses, Transposes Linear Algebra

Josh Engwer

TTU

25 September 2015

Josh Engwer (TTU)

Determinants: Products, Inverses, Transposes

Theorem

(Determinants of Products & Transposes)

Let *A*, *B* be $n \times n$ square matrices and $\alpha \neq 0$. Then:

(D1)	AB = A B	Determinant of a Matrix Product
(<i>D2</i>)	$ \alpha A = \alpha^n A $	Determinant of a Scalar Product
(<i>D3</i>)	$ A^T = A $	Determinant of a Transpose

Theorem

(Determinants of Products & Transposes)

Let *A*, *B* be $n \times n$ square matrices and $\alpha \neq 0$. Then:

(D1)	AB = A B
(<i>D2</i>)	$ \alpha A = \alpha^n A $
(D3)	$ A^T = A $

Determinant of a Matrix Product Determinant of a Scalar Product Determinant of a Transpose

PROOF:

(D1) The proof's a bit long & tedious - see the textbook if interested.

Theorem

(Determinants of Products & Transposes)

Let A, B be $n \times n$ square matrices and $\alpha \neq 0$. Then:

(D1)	AB = A B	Determinant of a Matrix Product
(<i>D2</i>)	$ \alpha A = \alpha^n A $	Determinant of a Scalar Product
(<i>D3</i>)	$ A^T = A $	Determinant of a Transpose

PROOF:

(D2) Observe that αA effectively scales each row of A by α

$$\implies A \xrightarrow{n \text{ row SCALE's by } \alpha} \alpha A \implies |\alpha A| = \underbrace{\alpha \alpha \cdots \alpha}_{n \text{ factors}} |A| = \alpha^n |A| \qquad \mathsf{QED}$$

Theorem

(Determinants of Products & Transposes)

Let *A*, *B* be $n \times n$ square matrices and $\alpha \neq 0$. Then:

(D1)	AB = A B
(<i>D2</i>)	$ \alpha A = \alpha^n A $
(D3)	$ A^T = A $

Determinant of a Matrix Product Determinant of a Scalar Product Determinant of a Transpose

PROOF:

(D3) Requires proof-by-induction - see textbook if interested.

(D2) is useful when computing determinants of matrices with...

• ...lots of negative signs:
$$\begin{vmatrix} -1 & -2 & 3 \\ 4 & -5 & -6 \\ -7 & 8 & -9 \end{vmatrix} = (-1)^3 \begin{vmatrix} 1 & 2 & -3 \\ -4 & 5 & 6 \\ 7 & -8 & 9 \end{vmatrix}$$

• ...lots of large numbers:
$$\begin{vmatrix} -240 & 360 & 0 \\ 600 & 120 & -120 \\ 0 & 960 & 720 \end{vmatrix} = (120)^3 \begin{vmatrix} -2 & 3 & 0 \\ 5 & 1 & -1 \\ 0 & 8 & 6 \end{vmatrix}$$

• ...lots of fractions:
$$\begin{vmatrix} 1/4 & -1/3 & 1/2 \\ -5/6 & 2/3 & 0 \\ 3/2 & 0 & -3/4 \end{vmatrix} = \left(\frac{1}{12}\right)^3 \begin{vmatrix} 3 & -4 & 6 \\ -10 & 8 & 0 \\ 18 & 0 & -9 \end{vmatrix}$$

The resulting determinants are far easier to compute.

Determinants of Extended Matrix Products & Powers

Corollary

(Determinants of Extended Matrix Products)

Let A_1, A_2, \ldots, A_k be $n \times n$ matrices. Then:

(D4) $|A_1A_2\cdots A_k| = |A_1||A_2|\cdots |A_k|$ Determinant of an Extended Product

PROOF: Use associativity of matrix products & (D1) repeatedly. QED

It turns out the determinant of a **power** of a square matrix can be computed without actually computing the power:

Corollary

(Determinants of Powers of a Square Matrix)

Let *A* be a $n \times n$ square matrix and $k \ge 2$ be a **positive integer**. Then:

(D5) $|A^k| = |A|^k$ Determinant of a Power

PROOF:
$$|A^k| = |\underbrace{AA \cdots A}_{k \text{ factors}}| \stackrel{D4}{=} \underbrace{|A||A|\cdots|A|}_{k \text{ factors}} = |A|^k$$

Theorem

(Determinant "Determines" Invertibility of a Matrix)

A square matrix A is invertible $\iff |A| \neq 0$

PROOF:

 (\Rightarrow) : Suppose *A* is invertible. Then:

$$\begin{array}{ll} A^{-1}A = I & [\text{Definition of } A \text{ being invertible}] \\ \implies |A^{-1}A| = |I| & [\text{Take determinant of both sides of matrix eqn}] \\ \implies |A^{-1}||A| = |I| & [\text{Determinant of matrix product property (D1)}] \\ \implies |A^{-1}||A| = 1 & [\text{Determinant of identity matrix } I \text{ is one}] \\ \implies |A^{-1}| \neq 0 \text{ and } |A| \neq 0 & [ab \neq 0 \implies a \neq 0 \text{ and } b \neq 0] \\ \hline (\Leftarrow): \text{ Suppose } |A| \neq 0. \text{ Then } A \xrightarrow{Gauss-Jordan} I & (\text{since } |I| \neq 0) \\ \implies [A|I] \xrightarrow{Gauss-Jordan} [I|A^{-1}] \implies A^{-1} \text{ exists } \implies A \text{ is invertible. QED} \end{array}$$

Determinant of an Inverse

The determinant of an **inverse** can be found without finding the inverse:

Theorem

(Determinant of an Inverse)

Let *A* be a $n \times n$ invertible square matrix. Then:

(D6) $|A^{-1}| = \frac{1}{|A|}$ Determinant of an Inverse

<u>PROOF</u>: Let *A* be invertible. Then $|A| \neq 0$ and :

	$A^{-1}A = I$
\Longrightarrow	$ A^{-1}A = I $
\implies	$ A^{-1} A = I $
\implies	$ A^{-1} A = 1$
\implies	$ A^{-1} = \frac{1}{ A }$

[Definition of *A* being invertible] [Take determinant of both sides of matrix eqn] [Determinant of matrix product property (D1)] [Determinant of identity matrix *I* is one]

[Divide both sides by |A| which is safe since $|A| \neq 0$]

QED

Determinants of Sums or Differences (WARNING)

In general,
$$|A + B| \neq |A| + |B|$$
 and $|A - B| \neq |A| - |B|$:
Consider $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & -5 \\ 4 & 4 \end{bmatrix} \implies |A| = -2$ and $|B| = 32$
Then $A + B = \begin{bmatrix} 4 & -3 \\ 7 & 8 \end{bmatrix}$ and $A - B = \begin{bmatrix} -2 & 7 \\ -1 & 0 \end{bmatrix}$
 $\implies |A + B| = 53 \neq -2 + 32 = |A| + |B|$
 $\implies |A - B| = 7 \neq -2 - 32 = |A| - |B|$

Josh Engwer (TTU)

Much of what's been covered so far in the course can be summarized as so:

Proposition

(Equivalent Conditions for an Invertible Matrix)

Let A be a $n \times n$ square matrix. Then the following are equivalent:

- A is invertible
- $A\mathbf{x} = \mathbf{b}$ has a **unique** soln for every RHS column vector \mathbf{b}
- $A\mathbf{x} = \vec{\mathbf{0}}$ has only the **trivial** soln $\mathbf{x} = \vec{\mathbf{0}}$ (*i.e.* $x_1 = 0, x_2 = 0, \dots, x_n = 0$)
- A is row-equivalent to the identity matrix I
- A can be written as a product of **elementary** matrices
- $|A| \neq 0$

<u>NOTATION:</u> $\vec{0}$ denotes the **column vector** with all entries being **zero**.

Fin.