Determinants: Products, Inverses, Transposes

Linear Algebra

Josh Engwer

TTU
25 September 2015

Determinants of Products \& Transposes

Determinants of products \& transposes of matrices can easily be found once the determinants of the matrices themselves are known:

Theorem

(Determinants of Products \& Transposes)
Let A, B be $n \times n$ square matrices and $\alpha \neq 0$. Then:
(D1) $\quad|A B|=|A||B| \quad$ Determinant of a Matrix Product
(D2) $|\alpha A|=\alpha^{n}|A| \quad$ Determinant of a Scalar Product
(D3) $\quad\left|A^{T}\right|=|A| \quad$ Determinant of a Transpose

Determinants of Products \& Transposes

Determinants of products \& transposes of matrices can easily be found once the determinants of the matrices themselves are known:

Theorem

(Determinants of Products \& Transposes)
Let A, B be $n \times n$ square matrices and $\alpha \neq 0$. Then:
(D1) $\quad|A B|=|A||B| \quad$ Determinant of a Matrix Product
(D2) $|\alpha A|=\alpha^{n}|A| \quad$ Determinant of a Scalar Product
(D3) $\quad\left|A^{T}\right|=|A| \quad$ Determinant of a Transpose

PROOF:

(D1) The proof's a bit long \& tedious - see the textbook if interested.

Determinants of Products \& Transposes

Determinants of products \& transposes of matrices can easily be found once the determinants of the matrices themselves are known:

Theorem

(Determinants of Products \& Transposes)
Let A, B be $n \times n$ square matrices and $\alpha \neq 0$. Then:
(D1) $\quad|A B|=|A||B| \quad$ Determinant of a Matrix Product
(D2) $\quad|\alpha A|=\alpha^{n}|A| \quad$ Determinant of a Scalar Product
(D3) $\quad\left|A^{T}\right|=|A| \quad$ Determinant of a Transpose

PROOF:

(D2) Observe that αA effectively scales each row of A by α

$$
\Longrightarrow A \xrightarrow{n \text { row SCALE's by } \alpha} \alpha A \Longrightarrow|\alpha A|=\underbrace{\alpha \alpha \cdots \alpha}_{n \text { factors }}|A|=\alpha^{n}|A| \quad \text { QED }
$$

Determinants of Products \& Transposes

Determinants of products \& transposes of matrices can easily be found once the determinants of the matrices themselves are known:

Theorem

(Determinants of Products \& Transposes)
Let A, B be $n \times n$ square matrices and $\alpha \neq 0$. Then:
(D1) $\quad|A B|=|A||B| \quad$ Determinant of a Matrix Product
(D2) $|\alpha A|=\alpha^{n}|A| \quad$ Determinant of a Scalar Product
(D3) $\quad\left|A^{T}\right|=|A| \quad$ Determinant of a Transpose

PROOF:

(D3) Requires proof-by-induction - see textbook if interested.

Value of Determinant of Scalar Product Property (D2)

(D2) is useful when computing determinants of matrices with...

- ...lots of negative signs: $\left|\begin{array}{rrr}-1 & -2 & 3 \\ 4 & -5 & -6 \\ -7 & 8 & -9\end{array}\right|=(-1)^{3}\left|\begin{array}{rrr}1 & 2 & -3 \\ -4 & 5 & 6 \\ 7 & -8 & 9\end{array}\right|$
- ...lots of large numbers: $\left|\begin{array}{rrr}-240 & 360 & 0 \\ 600 & 120 & -120 \\ 0 & 960 & 720\end{array}\right|=(120)^{3}\left|\begin{array}{rrr}-2 & 3 & 0 \\ 5 & 1 & -1 \\ 0 & 8 & 6\end{array}\right|$
- ...lots of fractions: $\left|\begin{array}{rrr}1 / 4 & -1 / 3 & 1 / 2 \\ -5 / 6 & 2 / 3 & 0 \\ 3 / 2 & 0 & -3 / 4\end{array}\right|=\left(\frac{1}{12}\right)^{3}\left|\begin{array}{rrr}3 & -4 & 6 \\ -10 & 8 & 0 \\ 18 & 0 & -9\end{array}\right|$

The resulting determinants are far easier to compute.

Determinants of Extended Matrix Products \& Powers

Corollary

(Determinants of Extended Matrix Products)
Let $A_{1}, A_{2}, \ldots, A_{k}$ be $n \times n$ matrices. Then:
(D4) $\quad\left|A_{1} A_{2} \cdots A_{k}\right|=\left|A_{1}\right|\left|A_{2}\right| \cdots\left|A_{k}\right| \quad$ Determinant of an Extended Product
PROOF: Use associativity of matrix products \& (D1) repeatedly. QED
It turns out the determinant of a power of a square matrix can be computed without actually computing the power:

Corollary

(Determinants of Powers of a Square Matrix)
Let A be a $n \times n$ square matrix and $k \geq 2$ be a positive integer. Then: (D5) $\quad\left|A^{k}\right|=|A|^{k} \quad$ Determinant of a Power

PROOF: $\left|A^{k}\right|=|\underbrace{A A \cdots A}_{k \text { factors }}| \stackrel{D 4}{=} \underbrace{|A||A| \cdots|A|}_{k \text { factors }}=|A|^{k}$

The Determinant "Determines" Invertibility (of a Matrix)

Theorem

(Determinant "Determines" Invertibility of a Matrix)
A square matrix A is invertible $\Longleftrightarrow|A| \neq 0$

PROOF:

(\Rightarrow) : Suppose A is invertible. Then:

$$
\begin{array}{lcll}
& A^{-1} A=I & & \text { [Definition of } A \text { being invertible] } \\
\Longrightarrow & \left|A^{-1} A\right|=|I| & & \text { [Take determinant of both sides of matrix eqn] } \\
\Longrightarrow & \left|A^{-1}\right||A|=|I| & & \text { [Determinant of matrix product property (D1)] } \\
\Longrightarrow & \left|A^{-1}\right||A|=1 & & \text { [Determinant of identity matrix } I \text { is one] } \\
\Longrightarrow & \left|A^{-1}\right| \neq 0 \text { and }|A| \neq 0 & & {[a b \neq 0 \Longrightarrow a \neq 0 \text { and } b \neq 0]}
\end{array}
$$

(\Leftarrow) : Suppose $|A| \neq 0$. Then $A \xrightarrow{\text { Gauss }- \text { Jordan }} I \quad($ since $|I| \neq 0)$
$\Longrightarrow[A \mid I] \xrightarrow{\text { Gauss }- \text { Jordan }}\left[I \mid A^{-1}\right] \Longrightarrow A^{-1}$ exists $\Longrightarrow A$ is invertible. QED

Determinant of an Inverse

The determinant of an inverse can be found without finding the inverse:

Theorem

(Determinant of an Inverse)
Let A be a $n \times n$ invertible square matrix. Then:
(D6) $\quad\left|A^{-1}\right|=\frac{1}{|A|} \quad$ Determinant of an Inverse
PROOF: Let A be invertible. Then $|A| \neq 0$ and :
$A^{-1} A=I \quad$ [Definition of A being invertible]
$\Longrightarrow \quad\left|A^{-1} A\right|=|I| \quad$ [Take determinant of both sides of matrix eqn]
$\Longrightarrow \quad\left|A^{-1}\right||A|=|I| \quad$ [Determinant of matrix product property (D1)]
$\Longrightarrow \quad\left|A^{-1}\right||A|=1 \quad$ [Determinant of identity matrix I is one]
$\Longrightarrow \quad\left|A^{-1}\right|=\frac{1}{|A|} \quad$ [Divide both sides by $|A|$ which is safe since $|A| \neq 0$]
QED

Determinants of Sums or Differences (WARNING)

AWARNING

In general, $|A+B| \neq|A|+|B|$ and $|A-B| \neq|A|-|B|$:
Consider $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ and $B=\left[\begin{array}{rr}3 & -5 \\ 4 & 4\end{array}\right] \Longrightarrow|A|=-2$ and $|B|=32$
Then $A+B=\left[\begin{array}{rr}4 & -3 \\ 7 & 8\end{array}\right]$ and $A-B=\left[\begin{array}{ll}-2 & 7 \\ -1 & 0\end{array}\right]$
$\Longrightarrow|A+B|=53 \neq-2+32=|A|+|B|$
$\Longrightarrow|A-B|=7 \neq-2-32=|A|-|B|$

Equivalent Conditions for an Invertible Matrix

Much of what's been covered so far in the course can be summarized as so:

Proposition

(Equivalent Conditions for an Invertible Matrix)
Let A be a $n \times n$ square matrix. Then the following are equivalent:

- A is invertible
- $A \mathbf{x}=\mathbf{b}$ has a unique soln for every RHS column vector \mathbf{b}
- $A \mathbf{x}=\overrightarrow{\mathbf{0}}$ has only the trivial soln $\mathbf{x}=\overrightarrow{\mathbf{0}} \quad$ (i.e. $x_{1}=0, x_{2}=0, \ldots, x_{n}=0$)
- A is row-equivalent to the identity matrix I
- A can be written as a product of elementary matrices
- $|A| \neq 0$

NOTATION: $\overrightarrow{\boldsymbol{0}}$ denotes the column vector with all entries being zero.

Fin.

