Vector Spaces
 Linear Algebra

Josh Engwer

TTU

30 September 2015

Tuple Form: An Alternative Notation for Vectors

When working with vectors, writing them as column vectors may take up too much vertical space.

Instead, using the tuple form is an alternative notation that conserves vertical space:
$\mathbf{u}=(1,2,3,4)=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right] \quad \mathbf{v}=(-1,0,5,-3)=\left[\begin{array}{r}-1 \\ 0 \\ 5 \\ -3\end{array}\right]$
Of course, vector addition \& scalar multiplication behave exactly the same:

$$
\begin{aligned}
& \Longrightarrow \mathbf{u}+\mathbf{v}=(1,2,3,4)+(-1,0,5,-3)=(0,2,8,1) \\
& \Longrightarrow 7 \mathbf{u}=(7,14,21,28) \quad \text { and } \quad-3 \mathbf{v}=(3,0,-15,9)
\end{aligned}
$$

Here's what the zero vector looks like in this case: $\overrightarrow{\boldsymbol{0}}=(0,0,0,0)=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$

Vector Space (Definition)

Definition

(Vector Space)
Let V be a set on which vector addition and scalar multiplication are defined. Then V is a vector space if these axioms hold $\forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $\forall \alpha, \beta \in \mathbb{R}$:

$\mathbf{u}+\mathbf{v} \in V$	(Closure under Addition)
$\alpha \mathbf{v} \in V$	(Closure under Scalar Multiplication)
$\overrightarrow{\mathbf{0}} \in V$	(Containment of the Zero Vector)
$\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$	(Commutativity of Vector Addition)
$\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w}$	(Associativity of Vector Addition)
$\mathbf{v}+\overrightarrow{\mathbf{0}}=\mathbf{v}$	(Additive Identity = Zero Vector)
$\mathbf{v}+(-\mathbf{v})=\overrightarrow{\mathbf{0}}$	(Vector + Its Additive Inverse = Additive Identity)
$\alpha(\mathbf{u}+\mathbf{v})=\alpha \mathbf{u}+\alpha \mathbf{v}$	(Scalar Mult. Distributes over Vector Addition)
$(\alpha+\beta) \mathbf{v}=\alpha \mathbf{v}+\beta \mathbf{v}$	(Scalar Mult. Distributes over Scalar Addition)
$\alpha(\beta \mathbf{v})=(\alpha \beta) \mathbf{v}$	(Associativity of Scalar Multiplication)
$1(\mathbf{v})=\mathbf{v}$	(Scalar Multiplicative Identity)

Common Vector Spaces

$$
\begin{aligned}
\mathbb{R} & \equiv \text { Set of all real numbers (scalars) } \\
\mathbb{R}^{2} & \equiv \text { Set of all ordered pairs (2-wide vectors) } \\
\mathbb{R}^{3} & \equiv \text { Set of all ordered triples (3-wide vectors) } \\
\mathbb{R}^{n} & \equiv \text { Set of all ordered } n \text {-tuples (} n \text {-wide vectors) } \\
\mathbb{R}^{m \times n} & \equiv \text { Set of all } m \times n \text { matrices } \\
\mathbb{R}^{n \times n} & \equiv \text { Set of all } n \times n \text { square matrices } \\
P & \equiv \text { Set of all polynomials } \\
P_{n} & \equiv \text { Set of all polynomials of degree } n \text { or less } \\
C[a, b] & \equiv \text { Set of all continuous functions on }[a, b] \\
C^{1}[a, b] & \equiv \text { Set of all differentiable functions on }[a, b] \\
C^{2}[a, b] & \equiv \text { Set of all twice-differentiable fcns on }[a, b] \\
C(-\infty, \infty) & \equiv \text { Set of all continuous functions on }(-\infty, \infty)
\end{aligned}
$$

REMARK: Always assume that the operations of vector addition \& scalar multiplication are the standard definitions.
One could define these operations in other ways, but such scenarios are dealt with extensively in Abstract Algebra. (MATH 3360)

Common Vector Spaces

VECTOR SPACE	EXAMPLE "VECTORS"	"ZERO VECTOR"
\mathbb{R}	Scalars: $a=-3 / 2, b=\sqrt{2}, c=\pi$	0
\mathbb{R}^{2}	Vectors: $\mathbf{u}=(-3,4), \mathbf{v}=(\sqrt{2}, \pi)$	$\overrightarrow{\mathbf{0}}=(0,0)$
\mathbb{R}^{3}	Vectors: $(1,1,1),(\sqrt{2}, \pi,-1)$	$\overrightarrow{\mathbf{0}}=(0,0,0)$
$\mathbb{R}^{3 \times 2}$	3×2 Matrices: $A=\left[\begin{array}{cc}1 & 2 \\ -3 & \sqrt{5} \\ -\pi & 1 / 6\end{array}\right]$	$O_{3 \times 2}=\left[\begin{array}{cc}0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right]$
$\mathbb{R}^{2 \times 2}$	2×2 Matrices: $B=\left[\begin{array}{cc}1 & 2 \\ -3 & \sqrt{5}\end{array}\right]$	$O_{2 \times 2}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
P_{1}	Polynomials: $p(t)=3, q(t)=4-2 t$	$z(t)=0+0 t$
P_{2}	Polynomials: $3,4-2 t, 5+t-7 t^{2}$	$z(t)=0+0 t+0 t^{2}$
P_{3}	Polynomials: $3-4 t+2 t^{2}+5 t^{3}$	$0+0 t+0 t^{2}+0 t^{3}$
$C[0,1]$	Functions: $x^{2}, \sin x, \sqrt{1+x}, \frac{1}{x-2}$	$z(x)=0$ on $[0,1]$
$C(-\infty, \infty)$	Functions: $x^{2}, \sin x, e^{x}, \sqrt[3]{x},\|x\|$	$z(x)=0$
$C^{1}(-\infty, \infty)$	Functions: $f(x)=x^{2}, \sin x, e^{x}$	$z(x)=0$

REMARK: Always assume that the operations of vector addition \& scalar multiplication are the standard definitions.

Establishing that a Set is a Vector Space (Example)

WEX 4-2-1: Show that $S:=\left\{\left[\begin{array}{l}x \\ 0\end{array}\right]: x \in \mathbb{R}\right\}$ is a vector space.

Establishing that a Set is a Vector Space (Example)

WEX 4-2-1: Show that $S:=\left\{\left[\begin{array}{l}x \\ 0\end{array}\right]: x \in \mathbb{R}\right\}$ is a vector space.
First, realize that for $\overrightarrow{\mathbf{x}}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ to be in set $S, x_{2}=0$.
i.e., the $2^{\text {nd }}$ component of a vector must be zero.

Establishing that a Set is a Vector Space (Example)

WEX 4-2-1: Show that $S:=\left\{\left[\begin{array}{l}x \\ 0\end{array}\right]: x \in \mathbb{R}\right\}$ is a vector space.
Let $\mathbf{u}=\left[\begin{array}{c}u_{1} \\ 0\end{array}\right] \in S, \mathbf{v}=\left[\begin{array}{c}v_{1} \\ 0\end{array}\right] \in S, \mathbf{w}=\left[\begin{array}{c}w_{1} \\ 0\end{array}\right] \in S$, and $\alpha, \beta \in \mathbb{R}$. Then:

Closure of Vector Addition: $\mathbf{u}+\mathbf{v}=\left[\begin{array}{c}u_{1} \\ 0\end{array}\right]+\left[\begin{array}{c}v_{1} \\ 0\end{array}\right]=\left[\begin{array}{c}u_{1}+v_{1} \\ 0\end{array}\right] \in S$
Closure of Scalar Multiplication: $\alpha \mathbf{v}=\alpha\left[\begin{array}{c}v_{1} \\ 0\end{array}\right]=\left[\begin{array}{c}\alpha v_{1} \\ 0\end{array}\right] \in S$
Containment of Zero Vector: $\overrightarrow{\mathbf{0}}=\left[\begin{array}{l}0 \\ 0\end{array}\right] \in S$

Establishing that a Set is a Vector Space (Example)

WEX 4-2-1: Show that $S:=\left\{\left[\begin{array}{l}x \\ 0\end{array}\right]: x \in \mathbb{R}\right\}$ is a vector space.
Let $\mathbf{u}=\left[\begin{array}{c}u_{1} \\ 0\end{array}\right] \in S, \mathbf{v}=\left[\begin{array}{c}v_{1} \\ 0\end{array}\right] \in S, \mathbf{w}=\left[\begin{array}{c}w_{1} \\ 0\end{array}\right] \in S$, and $\alpha, \beta \in \mathbb{R}$. Then:

Commutativity of Vector Addition: $\mathbf{u}+\mathbf{v}=\left[\begin{array}{c}u_{1}+v_{1} \\ 0\end{array}\right]=\left[\begin{array}{c}v_{1}+u_{1} \\ 0\end{array}\right]=\mathbf{v}+\mathbf{u}$ Associativity of Vector Addition:

$$
\mathbf{u}+(\mathbf{v}+\mathbf{w})=\left[\begin{array}{c}
u_{1}+\left(v_{1}+w_{1}\right) \\
0
\end{array}\right]=\left[\begin{array}{c}
\left(u_{1}+v_{1}\right)+w_{1} \\
0
\end{array}\right]=(\mathbf{u}+\mathbf{v})+\mathbf{w}
$$

Additive Identity: $\mathbf{v}+\overrightarrow{\mathbf{0}}=\left[\begin{array}{c}v_{1}+0 \\ 0\end{array}\right]=\left[\begin{array}{c}v_{1} \\ 0\end{array}\right]=\mathbf{v}$
Additive Inverse: $\mathbf{v}+(-\mathbf{v})=\left[\begin{array}{c}v_{1}+\left(-v_{1}\right) \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]=\overrightarrow{\mathbf{0}}$

Establishing that a Set is a Vector Space (Example)

WEX 4-2-1: Show that $S:=\left\{\left[\begin{array}{l}x \\ 0\end{array}\right]: x \in \mathbb{R}\right\}$ is a vector space.
Let $\mathbf{u}=\left[\begin{array}{c}u_{1} \\ 0\end{array}\right] \in S, \mathbf{v}=\left[\begin{array}{c}v_{1} \\ 0\end{array}\right] \in S, \mathbf{w}=\left[\begin{array}{c}w_{1} \\ 0\end{array}\right] \in S$, and $\alpha, \beta \in \mathbb{R}$. Then:
Distribution of SM over VA: $\alpha(\mathbf{u}+\mathbf{v})=\alpha\left[\begin{array}{c}u_{1}+v_{1} \\ 0\end{array}\right]=\left[\begin{array}{c}\alpha\left(v_{1}+u_{1}\right) \\ 0\end{array}\right]=$ $\left[\begin{array}{c}\alpha v_{1}+\alpha u_{1} \\ 0\end{array}\right]=\left[\begin{array}{c}\alpha v_{1} \\ 0\end{array}\right]+\left[\begin{array}{c}\alpha u_{1} \\ 0\end{array}\right]=\alpha\left[\begin{array}{c}v_{1} \\ 0\end{array}\right]+\alpha\left[\begin{array}{c}u_{1} \\ 0\end{array}\right]=\alpha \mathbf{v}+\alpha \mathbf{u}$
Distribution of SM over SA: $(\alpha+\beta) \mathbf{v}=(\alpha+\beta)\left[\begin{array}{c}v_{1} \\ 0\end{array}\right]=\left[\begin{array}{c}(\alpha+\beta) v_{1} \\ 0\end{array}\right]=$ $\left[\begin{array}{c}\alpha v_{1}+\beta v_{1} \\ 0\end{array}\right]=\left[\begin{array}{c}\alpha v_{1} \\ 0\end{array}\right]+\left[\begin{array}{c}\beta v_{1} \\ 0\end{array}\right]=\alpha\left[\begin{array}{c}v_{1} \\ 0\end{array}\right]+\beta\left[\begin{array}{c}v_{1} \\ 0\end{array}\right]=\alpha \mathbf{v}+\beta \mathbf{v}$
Associativity of SM: $\alpha(\beta \mathbf{v})=\alpha\left(\beta\left[\begin{array}{c}v_{1} \\ 0\end{array}\right]\right)=\alpha\left[\begin{array}{c}\beta v_{1} \\ 0\end{array}\right]=\left[\begin{array}{c}\alpha \beta v_{1} \\ 0\end{array}\right]=$ $\left[\begin{array}{c}(\alpha \beta) v_{1} \\ 0\end{array}\right]=(\alpha \beta)\left[\begin{array}{c}v_{1} \\ 0\end{array}\right]=(\alpha \beta) \mathbf{v}$
Scalar Multiplicative Identity: $1(\mathbf{v})=1\left[\begin{array}{c}v_{1} \\ 0\end{array}\right]=\left[\begin{array}{c}1\left(v_{1}\right) \\ 0\end{array}\right]=\left[\begin{array}{c}v_{1} \\ 0\end{array}\right]=\mathbf{v}$

Establishing that a Set is not a Vector Space

As just witnessed, showing that a set is a vector space is long \& tedious.
Fortunately, showing that a set is not a vector space is far less tedious:

Corollary

(When a Set is not a Vector Space)
A set S is not a vector space if at least one of the following is true:

- The zero vector is not in the set: $\overrightarrow{\mathbf{0}} \notin S$
- The additive inverse is not in the set: $\mathbf{v} \in S$ and $-\mathbf{v} \notin S$
- Closure of Vector Addition fails: $\exists \mathbf{u}, \mathbf{v} \in S$ such that $\mathbf{u}+\mathbf{v} \notin S$
- Closure of Scalar Multiplication fails: $\exists \mathbf{v} \in S, \alpha \in \mathbb{R}$ such that $\alpha \mathbf{v} \notin S$

REMARK: Always assume that the operations of vector addition \& scalar multiplication are the standard definitions.
One could define these operations in other ways, but such scenarios are dealt with extensively in Abstract Algebra.

Showing that a Set is not a Vector Space (Example)

WEX 4-2-2: Show that $S:=\left\{\left(x_{1}, x_{2}, 1\right): x_{1}, x_{2} \in \mathbb{R}\right\}$ is not a vector space.

Showing that a Set is not a Vector Space (Example)

WEX 4-2-2: Show that $S:=\left\{\left(x_{1}, x_{2}, 1\right): x_{1}, x_{2} \in \mathbb{R}\right\}$ is not a vector space.
There are three ways to show this, but writing only one of them is sufficient: (First way)

First, realize that for vector $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$ to be in set $S, x_{3}=1$.
i.e., the $3^{r d}$ component of the vector must be one.

However, observe that the zero vector $\overrightarrow{\mathbf{0}}=(0,0,0) \notin S$ (Since $3^{\text {rd }}$ component of $\overrightarrow{\boldsymbol{0}}$ is zero, not one)

Therefore, S is not a vector space.

Showing that a Set is not a Vector Space (Example)

WEX 4-2-2: Show that $S:=\left\{\left(x_{1}, x_{2}, 1\right): x_{1}, x_{2} \in \mathbb{R}\right\}$ is not a vector space.
There are three ways to show this, but writing only one of them is sufficient: (Second way)

First, realize that for vector $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$ to be in set $S, x_{3}=1$.
i.e., the $3^{r d}$ component of the vector must be one.

Let $\mathbf{u}=(1,2,1) \in S, \mathbf{v}=(-1,0,1) \in S$
Then, $\mathbf{u}+\mathbf{v}=(1,2,1)+(-1,0,1)=(1+(-1), 2+0,1+1)=(0,2,2) \notin S$
(Since $3^{r d}$ component of $(0,2,2)$ is two, not one)

Therefore, S is not a vector space.

Showing that a Set is not a Vector Space (Example)

WEX 4-2-2: Show that $S:=\left\{\left(x_{1}, x_{2}, 1\right): x_{1}, x_{2} \in \mathbb{R}\right\}$ is not a vector space.
There are three ways to show this, but writing only one of them is sufficient:
(Third way)
First, realize that for vector $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$ to be in set $S, x_{3}=1$.
i.e., the $3^{r d}$ component of the vector must be one.

Let $\mathbf{v}=(5,2,1) \in S$ and $\alpha=4$
Then, $\alpha \mathbf{v}=4(5,2,1)=(4 \cdot 5,4 \cdot 2,4 \cdot 1)=(20,8,4) \notin S$
(Since $3^{r d}$ component of $(20,8,4)$ is four, not one)

Therefore, S is not a vector space.

Showing that a Set is not a Vector Space (Example)

WEX 4-2-3: Show that $S:=\left\{\left[\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right]: a, d \in \mathbb{Q}\right\}$ is not a vector space.

Showing that a Set is not a Vector Space (Example)

WEX 4-2-3: Show that $S:=\left\{\left[\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right]: a, d \in \mathbb{Q}\right\}$ is not a vector space.
First, realize that for matrix $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$ to be in set S,
$a_{12}=a_{21}=0$ and $a_{11} \& a_{22}$ must both be rational.
i.e., the $(1,2)$-entry \& $(2,1)$-entry of a 2×2 matrix must both be zero, and the $(1,1)$-entry \& $(2,2)$-entry must both be rational.

Let $A=\left[\begin{array}{cc}1 & 0 \\ 0 & \frac{1}{3}\end{array}\right] \in S$ and $\alpha=\sqrt{5}$. Then:
$\alpha A=\sqrt{5}\left[\begin{array}{cc}1 & 0 \\ 0 & \frac{1}{3}\end{array}\right]=\left[\begin{array}{ll}(1)(\sqrt{5}) & (0)(\sqrt{5}) \\ (0)(\sqrt{5}) & \left(\frac{1}{3}\right)(\sqrt{5})\end{array}\right]=\left[\begin{array}{cc}\sqrt{5} & 0 \\ 0 & \frac{\sqrt{5}}{3}\end{array}\right] \notin S$
(Since the (1,1)-entry \& (2,2)-entry of αA are not rational)

Therefore, S is not a vector space.

Fin.

