Vector Spaces Linear Algebra

Josh Engwer

TTU

30 September 2015

Tuple Form: An Alternative Notation for Vectors

When working with vectors, writing them as column vectors may take up too much vertical space.

Instead, using the **tuple form** is an alternative notation that conserves vertical space:

$$\mathbf{u} = (1, 2, 3, 4) = \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix} \qquad \mathbf{v} = (-1, 0, 5, -3) = \begin{bmatrix} -1\\0\\5\\-3 \end{bmatrix}$$

Of course, vector addition & scalar multiplication behave exactly the same:

$$\implies \mathbf{u} + \mathbf{v} = (1, 2, 3, 4) + (-1, 0, 5, -3) = (0, 2, 8, 1)$$

$$\implies$$
 7**u** = (7, 14, 21, 28) and -3**v** = (3, 0, -15, 9)

Here's what the **zero vector** looks like in this case: $\vec{\mathbf{0}} = (0, 0, 0, 0) = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$

Vector Space (Definition)

Definition

(Vector Space)

Let *V* be a set on which vector addition and scalar multiplication are defined. Then *V* is a **vector space** if these <u>axioms</u> hold $\forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $\forall \alpha, \beta \in \mathbb{R}$:

$\mathbf{u} + \mathbf{v} \in V$	(Closure under Addition)	
$\alpha \mathbf{v} \in V$	(Closure under Scalar Multiplication)	
$ec{0} \in V$	(Containment of the Zero Vector)	
$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$	(Commutativity of Vector Addition)	
$\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$	(Associativity of Vector Addition)	
$\mathbf{v} + \mathbf{\vec{0}} = \mathbf{v}$	(Additive Identity = Zero Vector)	
$\mathbf{v} + (-\mathbf{v}) = \vec{0}$	(Vector + Its Additive Inverse = Additive Identity)	
$\alpha(\mathbf{u} + \mathbf{v}) = \alpha \mathbf{u} + \alpha \mathbf{v}$	(Scalar Mult. Distributes over Vector Addition)	
$(\alpha + \beta)\mathbf{v} = \alpha \mathbf{v} + \beta \mathbf{v}$	(Scalar Mult. Distributes over Scalar Addition)	
$\alpha(\beta \mathbf{v}) = (\alpha \beta) \mathbf{v}$	(Associativity of Scalar Multiplication)	
$1(\mathbf{v}) = \mathbf{v}$	(Scalar Multiplicative Identity)	

Common Vector Spaces

- $\mathbb{R} \equiv$ Set of all real numbers (scalars)
- $\mathbb{R}^2 \equiv$ Set of all ordered pairs (2-wide vectors)
- $\mathbb{R}^3 \equiv$ Set of all ordered triples (3-wide vectors)
- $\mathbb{R}^n \equiv$ Set of all ordered *n*-tuples (*n*-wide vectors)
- $\mathbb{R}^{m \times n} \equiv$ Set of all $m \times n$ matrices
- $\mathbb{R}^{n \times n} \equiv$ Set of all $n \times n$ square matrices
 - $P \equiv$ Set of all polynomials
 - $P_n \equiv$ Set of all polynomials of degree *n* or less
- $C[a,b] \equiv$ Set of all continuous functions on [a,b]
- $C^{1}[a,b] \equiv$ Set of all differentiable functions on [a,b]
- $C^{2}[a,b] \equiv$ Set of all twice-differentiable fcns on [a,b]
- $C(-\infty,\infty) \equiv$ Set of all continuous functions on $(-\infty,\infty)$

<u>REMARK:</u> Always assume that the operations of vector addition & scalar multiplication are the standard definitions.

One could define these operations in other ways, but such scenarios are dealt with extensively in **Abstract Algebra**. (MATH 3360)

Common Vector Spaces

VECTOR SPACE	EXAMPLE "VECTORS"	"ZERO VECTOR"
R	Scalars: $a = -3/2, b = \sqrt{2}, c = \pi$	0
\mathbb{R}^2	Vectors: $\mathbf{u} = (-3, 4), \mathbf{v} = (\sqrt{2}, \pi)$	$\vec{0} = (0,0)$
\mathbb{R}^3	Vectors: $(1, 1, 1), (\sqrt{2}, \pi, -1)$	$\vec{0} = (0,0,0)$
$\mathbb{R}^{3 \times 2}$	$3 \times 2 \text{ Matrices: } A = \begin{bmatrix} 1 & 2 \\ -3 & \sqrt{5} \\ -\pi & 1/6 \end{bmatrix}$	$O_{3\times 2} = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array} \right]$
$\mathbb{R}^{2 \times 2}$	2×2 Matrices: $B = \begin{bmatrix} 1 & 2 \\ -3 & \sqrt{5} \end{bmatrix}$	$O_{2\times 2} = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right]$
<i>P</i> ₁	Polynomials: $p(t) = 3, q(t) = 4 - 2t$	z(t) = 0 + 0t
P_2	Polynomials: $3, 4 - 2t, 5 + t - 7t^2$	$z(t) = 0 + 0t + 0t^2$
<i>P</i> ₃	Polynomials: $3 - 4t + 2t^2 + 5t^3$	$0 + 0t + 0t^2 + 0t^3$
<i>C</i> [0, 1]	Functions: x^2 , $\sin x$, $\sqrt{1+x}$, $\frac{1}{x-2}$	z(x) = 0 on $[0, 1]$
$C(-\infty,\infty)$	Functions: x^2 , $\sin x$, e^x , $\sqrt[3]{x}$, $ x ^2$	z(x) = 0
$C^1(-\infty,\infty)$	Functions: $f(x) = x^2$, $\sin x$, e^x	z(x) = 0

<u>REMARK:</u> Always assume that the operations of vector addition & scalar multiplication are the standard definitions.

Josh Engwer (TTU)

Vector Spaces

WEX 4-2-1: Show that
$$S := \left\{ \begin{bmatrix} x \\ 0 \end{bmatrix} : x \in \mathbb{R} \right\}$$
 is a vector space.

WEX 4-2-1: Show that
$$S := \left\{ \begin{bmatrix} x \\ 0 \end{bmatrix} : x \in \mathbb{R} \right\}$$
 is a vector space.
First, realize that for $\vec{\mathbf{x}} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ to be in set $S, x_2 = 0$.

i.e., the 2^{nd} component of a vector must be zero.

WEX 4-2-1: Show that
$$S := \left\{ \begin{bmatrix} x \\ 0 \end{bmatrix} : x \in \mathbb{R} \right\}$$
 is a vector space.
Let $\mathbf{u} = \begin{bmatrix} u_1 \\ 0 \end{bmatrix} \in S$, $\mathbf{v} = \begin{bmatrix} v_1 \\ 0 \end{bmatrix} \in S$, $\mathbf{w} = \begin{bmatrix} w_1 \\ 0 \end{bmatrix} \in S$, and $\alpha, \beta \in \mathbb{R}$. Then:

Closure of Vector Addition:
$$\mathbf{u} + \mathbf{v} = \begin{bmatrix} u_1 \\ 0 \end{bmatrix} + \begin{bmatrix} v_1 \\ 0 \end{bmatrix} = \begin{bmatrix} u_1 + v_1 \\ 0 \end{bmatrix} \in S$$

Closure of Scalar Multiplication: $\alpha \mathbf{v} = \alpha \begin{bmatrix} v_1 \\ 0 \end{bmatrix} = \begin{bmatrix} \alpha v_1 \\ 0 \end{bmatrix} \in S$
Containment of Zero Vector: $\vec{\mathbf{0}} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \in S$

-

WEX 4-2-1: Show that
$$S := \left\{ \begin{bmatrix} x \\ 0 \end{bmatrix} : x \in \mathbb{R} \right\}$$
 is a vector space.
Let $\mathbf{u} = \begin{bmatrix} u_1 \\ 0 \end{bmatrix} \in S$, $\mathbf{v} = \begin{bmatrix} v_1 \\ 0 \end{bmatrix} \in S$, $\mathbf{w} = \begin{bmatrix} w_1 \\ 0 \end{bmatrix} \in S$, and $\alpha, \beta \in \mathbb{R}$. Then:

Commutativity of Vector Addition: $\mathbf{u} + \mathbf{v} = \begin{bmatrix} u_1 + v_1 \\ 0 \end{bmatrix} = \begin{bmatrix} v_1 + u_1 \\ 0 \end{bmatrix} = \mathbf{v} + \mathbf{u}$

Associativity of Vector Addition:

$$\mathbf{u} + (\mathbf{v} + \mathbf{w}) = \begin{bmatrix} u_1 + (v_1 + w_1) \\ 0 \end{bmatrix} = \begin{bmatrix} (u_1 + v_1) + w_1 \\ 0 \end{bmatrix} = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$$

Additive Identity: $\mathbf{v} + \vec{\mathbf{0}} = \begin{bmatrix} v_1 + 0 \\ 0 \end{bmatrix} = \begin{bmatrix} v_1 \\ 0 \end{bmatrix} = \mathbf{v}$

Additive Inverse: $\mathbf{v} + (-\mathbf{v}) = \begin{bmatrix} v_1 + (-v_1) \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \vec{\mathbf{0}}$

WEX 4-2-1: Show that
$$S := \left\{ \begin{bmatrix} x \\ 0 \end{bmatrix} : x \in \mathbb{R} \right\}$$
 is a vector space.

Let
$$\mathbf{u} = \begin{bmatrix} u_1 \\ 0 \end{bmatrix} \in S$$
, $\mathbf{v} = \begin{bmatrix} v_1 \\ 0 \end{bmatrix} \in S$, $\mathbf{w} = \begin{bmatrix} w_1 \\ 0 \end{bmatrix} \in S$, and $\alpha, \beta \in \mathbb{R}$. Then:

Distribution of SM over VA:
$$\alpha(\mathbf{u} + \mathbf{v}) = \alpha \begin{bmatrix} u_1 + v_1 \\ 0 \end{bmatrix} = \begin{bmatrix} \alpha(v_1 + u_1) \\ 0 \end{bmatrix} = \begin{bmatrix} \alpha v_1 + \alpha u_1 \\ 0 \end{bmatrix} = \begin{bmatrix} \alpha v_1 \\ 0 \end{bmatrix} + \begin{bmatrix} \alpha u_1 \\ 0 \end{bmatrix} = \alpha \begin{bmatrix} v_1 \\ 0 \end{bmatrix} + \alpha \begin{bmatrix} u_1 \\ 0 \end{bmatrix} = \alpha \mathbf{v} + \alpha \mathbf{u}$$

Distribution of SM over SA: $(\alpha + \beta)\mathbf{v} = (\alpha + \beta)\begin{bmatrix} v_1 \\ 0 \end{bmatrix} = \begin{bmatrix} (\alpha + \beta)v_1 \\ 0 \end{bmatrix} = \begin{bmatrix} (\alpha + \beta)v_1 \\ 0 \end{bmatrix} = \begin{bmatrix} \alpha \mathbf{v} + \beta \mathbf{v} \end{bmatrix}$

$$\begin{bmatrix} \alpha \nu_1 + \beta \nu_1 \\ 0 \end{bmatrix} = \begin{bmatrix} \alpha \nu_1 \\ 0 \end{bmatrix} + \begin{bmatrix} \beta \nu_1 \\ 0 \end{bmatrix} = \alpha \begin{bmatrix} \nu_1 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} \nu_1 \\ 0 \end{bmatrix} = \alpha \mathbf{v} + \beta \mathbf{v}$$
Associativity of SM: $\alpha (\beta \mathbf{v}) = \alpha \left(\beta \begin{bmatrix} \nu_1 \\ 0 \end{bmatrix}\right) = \alpha \begin{bmatrix} \beta \nu_1 \\ 0 \end{bmatrix} = \begin{bmatrix} \alpha \beta \nu_1 \\ 0 \end{bmatrix} = \begin{bmatrix} (\alpha \beta) \nu_1 \\ 0 \end{bmatrix} = (\alpha \beta) \begin{bmatrix} \nu_1 \\ 0 \end{bmatrix} = (\alpha \beta) \mathbf{v}$

Scalar Multiplicative Identity: $1(\mathbf{v}) = 1 \begin{bmatrix} v_1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1(v_1) \\ 0 \end{bmatrix} = \begin{bmatrix} v_1 \\ 0 \end{bmatrix} = \mathbf{v}$

Establishing that a Set is **not** a Vector Space

As just witnessed, showing that a set is a vector space is long & tedious.

Fortunately, showing that a set is **not** a vector space is far less tedious:

Corollary

(When a Set is not a Vector Space)

A set S is <u>not</u> a vector space if <u>at least</u> one of the following is true:

- The zero vector is not in the set: $\vec{0} \notin S$
- The additive inverse is not in the set: $\mathbf{v} \in S$ and $-\mathbf{v} \notin S$
- Closure of Vector Addition fails: $\exists u, v \in S$ such that $u + v \notin S$
- Closure of Scalar Multiplication fails: $\exists v \in S, \alpha \in \mathbb{R}$ such that $\alpha v \notin S$

<u>REMARK:</u> Always assume that the operations of vector addition & scalar multiplication are the standard definitions.

One could define these operations in other ways, but such scenarios are dealt with extensively in **Abstract Algebra**.

WEX 4-2-2: Show that $S := \{(x_1, x_2, 1) : x_1, x_2 \in \mathbb{R}\}$ is <u>not</u> a vector space.

WEX 4-2-2: Show that $S := \{(x_1, x_2, 1) : x_1, x_2 \in \mathbb{R}\}$ is <u>not</u> a vector space.

There are three ways to show this, but writing only one of them is sufficient: (First way)

First, realize that for vector $\mathbf{x} = (x_1, x_2, x_3)$ to be in set *S*, $x_3 = 1$. i.e., the 3^{*rd*} component of the vector must be one.

However, observe that the **zero vector** $\vec{\mathbf{0}} = (0, 0, 0) \notin S$ (Since 3^{rd} component of $\vec{\mathbf{0}}$ is zero, not one)

Therefore, *S* is <u>**not</u></u> a vector space</u>**

WEX 4-2-2: Show that $S := \{(x_1, x_2, 1) : x_1, x_2 \in \mathbb{R}\}$ is <u>not</u> a vector space.

There are three ways to show this, but writing only one of them is sufficient: (Second way)

First, realize that for vector $\mathbf{x} = (x_1, x_2, x_3)$ to be in set *S*, $x_3 = 1$. i.e., the 3^{*rd*} component of the vector must be one.

Let $\mathbf{u} = (1, 2, 1) \in S$, $\mathbf{v} = (-1, 0, 1) \in S$ Then, $\mathbf{u} + \mathbf{v} = (1, 2, 1) + (-1, 0, 1) = (1 + (-1), 2 + 0, 1 + 1) = (0, 2, 2) \notin S$ (Since 3^{rd} component of (0, 2, 2) is two, not one)

Therefore, *S* is **not** a vector space.

WEX 4-2-2: Show that $S := \{(x_1, x_2, 1) : x_1, x_2 \in \mathbb{R}\}$ is <u>not</u> a vector space.

There are three ways to show this, but writing only one of them is sufficient: (Third way)

First, realize that for vector $\mathbf{x} = (x_1, x_2, x_3)$ to be in set *S*, $x_3 = 1$. i.e., the 3^{*rd*} component of the vector must be one.

Let $\mathbf{v} = (5, 2, 1) \in S$ and $\alpha = 4$ Then, $\alpha \mathbf{v} = 4(5, 2, 1) = (4 \cdot 5, 4 \cdot 2, 4 \cdot 1) = (20, 8, 4) \notin S$ (Since 3^{rd} component of (20, 8, 4) is four, not one)

Therefore, *S* is **not** a vector space.

WEX 4-2-3: Show that
$$S := \left\{ \begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix} : a, d \in \mathbb{Q} \right\}$$
 is not a vector space.

WEX 4-2-3: Show that
$$S := \left\{ \begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix} : a, d \in \mathbb{Q} \right\}$$
 is not a vector space.

First, realize that for matrix $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ to be in set *S*,

 $a_{12} = a_{21} = 0$ and $a_{11} \& a_{22}$ must both be **rational**.

i.e., the (1,2)-entry & (2,1)-entry of a 2x2 matrix must both be zero, and the (1,1)-entry & (2,2)-entry must both be **rational**.

Let
$$A = \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{3} \end{bmatrix} \in S$$
 and $\alpha = \sqrt{5}$. Then:
 $\alpha A = \sqrt{5} \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{3} \end{bmatrix} = \begin{bmatrix} (1)(\sqrt{5}) & (0)(\sqrt{5}) \\ (0)(\sqrt{5}) & (\frac{1}{3})(\sqrt{5}) \end{bmatrix} = \begin{bmatrix} \sqrt{5} & 0 \\ 0 & \frac{\sqrt{5}}{3} \end{bmatrix} \notin S$

(Since the (1,1)-entry & (2,2)-entry of αA are **not rational**)

Therefore, *S* is **not** a vector space

Fin.