Subspaces Linear Algebra

Josh Engwer

TTU

02 October 2015

Common Vector Spaces (Review)

- $\mathbb{R} \equiv$ Set of all real numbers (scalars)
- $\mathbb{R}^2 \equiv$ Set of all ordered pairs (2-wide vectors)
- $\mathbb{R}^3 \equiv$ Set of all ordered triples (3-wide vectors)
- $\mathbb{R}^n \equiv$ Set of all ordered *n*-tuples (*n*-wide vectors)
- $\mathbb{R}^{m \times n} \equiv$ Set of all $m \times n$ matrices
- $\mathbb{R}^{n \times n} \equiv$ Set of all $n \times n$ square matrices
 - $P \equiv$ Set of all polynomials
 - $P_n \equiv$ Set of all polynomials of degree *n* or less
- $C[a,b] \equiv$ Set of all continuous functions on [a,b]
- $C^{1}[a,b] \equiv$ Set of all differentiable functions on [a,b]
- $C^{2}[a,b] \equiv$ Set of all twice-differentiable fcns on [a,b]
- $C(-\infty,\infty) \equiv$ Set of all continuous functions on $(-\infty,\infty)$

<u>REMARK:</u> Always assume that the operations of vector addition & scalar multiplication are the standard definitions.

One could define these operations in other ways, but such scenarios are dealt with extensively in **Abstract Algebra**. (MATH 3360)

Common Vector Spaces

VECTOR SPACE	EXAMPLE "VECTORS"	"ZERO VECTOR"
R	Scalars: $a = -3/2, b = \sqrt{2}, c = \pi$	0
\mathbb{R}^2	Vectors: $\mathbf{u} = (-3, 4), \mathbf{v} = (\sqrt{2}, \pi)$	$\vec{0} = (0,0)$
\mathbb{R}^3	Vectors: $(1, 1, 1), (\sqrt{2}, \pi, -1)$	$\vec{0} = (0,0,0)$
ℝ ^{3×2}	$3 \times 2 \text{ Matrices:} \begin{bmatrix} 1 & 2 \\ -3 & \sqrt{5} \\ -\pi & 1/6 \end{bmatrix}$	$O_{3\times 2} = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array} \right]$
$\mathbb{R}^{2 \times 2}$	2×2 Matrices: $\begin{bmatrix} 1 & 2 \\ -3 & \sqrt{5} \end{bmatrix}$	$O_{2 imes 2} = \left[egin{array}{cc} 0 & 0 \ 0 & 0 \end{array} ight]$
<i>P</i> ₁	Polynomials: $p(t) = 3, q(t) = 4 - 2t$	z(t) = 0 + 0t
P_2	Polynomials: $3, 4 - 2t, 5 + t - 7t^2$	$z(t) = 0 + 0t + 0t^2$
<i>P</i> ₃	Polynomials: $3 - 4t + 2t^2 + 5t^3$	$0 + 0t + 0t^2 + 0t^3$
<i>C</i> [0, 1]	Functions: x^2 , $\sin x$, $\sqrt{1+x}$, $\frac{1}{x-2}$	z(x) = 0 on $[0, 1]$
$C(-\infty,\infty)$	Functions: x^2 , $\sin x$, e^x , $\sqrt[3]{x}$, $ x $	z(x) = 0
$C^1(-\infty,\infty)$	Functions: $f(x) = x^2$, $\sin x$, e^x	z(x) = 0

<u>REMARK:</u> Always assume that the operations of vector addition & scalar multiplication are the standard definitions.

Josh Engwer (TTU)

Subspaces

Often in applications, interesting behavior occurs not in an entire vector space, but rather a subset of it that itself acts like a vector space. Such a subset of a vector space is called a **subspace**:

Definition		
(Subspace)		
Let <i>V</i> be a vector space. Then a nonempty set <i>W</i> is a subspace of <i>V</i> if the following all hold:		
$W\subseteq V$	(W is a subset of V)	
$\vec{0} \in W$	(W contains the zero vector)	
$\mathbf{u}, \mathbf{v} \in W \implies \mathbf{u} + \mathbf{v} \in W$ $\mathbf{v} \in W, \alpha \in \mathbb{R} \implies \alpha \mathbf{v} \in W$	(<i>W</i> is closed under vector addition) (<i>W</i> is closed under scalar multiplication)	

Every vector space has two trivial subspaces:

Corollary(Trivial Subspaces)Let V be a vector space. Then $\{\vec{0}\}$ and V are the two trivial subspaces of V.

<u>**REMARK:**</u> $\{\vec{0}\}$ is sometimes called the **zero subspace**.

Trivial Subspaces of a Vector Space

Every vector space has two trivial subspaces:

Corollary

(Trivial Subspaces)

Let V be a vector space. Then $\{\vec{0}\}$ and V are the two **trivial subspaces** of V.

<u>PROOF</u>: Since *V* is a vector space, it's closed under vector addition & scalar multiplication, and $\vec{\mathbf{0}} \in V$.

Moreover, a set is a subset of itself: $V \subseteq V$. Thus, V is a subspace of V.

As for the other set, let $W_0 = \{\vec{0}\}$ and $\alpha \in \mathbb{R}$. Then: $\vec{0} \in W_0$ (In fact, $\vec{0}$ is the <u>only</u> vector in W_0) $W_0 \subseteq V$ $\vec{0} + \vec{0} = \vec{0} \in W_0 \implies W_0$ is closed under vector addition. $\alpha (\vec{0}) = \vec{0} \in W_0 \implies W_0$ is closed under scalar multiplication. Thus, $W_0 = \{\vec{0}\}$ is a subspace of *V*.

Theorem

(The Intersection of Two Subspaces is a Subspace)

Let W_1, W_2 both be subspaces of vector space V. Then, $W_1 \cap W_2$ is a subspace of V.

The Intersection of Two Subspaces is a Subspace

Theorem

(The Intersection of Two Subspaces is a Subspace)

Let W_1, W_2 both be subspaces of vector space V. Then, $W_1 \cap W_2$ is a subspace of V.

<u>PROOF</u>: First observe that $W_1 \cap W_2 \subseteq W_1$, $W_1 \cap W_2 \subseteq W_2$. Let $\alpha \in \mathbb{R}$ and $\mathbf{u}, \mathbf{v} \in W_1 \cap W_2$. Then: Since W_1 is a subspace, $W_1 \subseteq V$, $\vec{\mathbf{0}} \in W_1$, $\mathbf{u}, \mathbf{v} \in W_1 \implies \mathbf{u} + \mathbf{v} \in W_1$, $\alpha \mathbf{v} \in W_1$ Since W_2 is a subspace, $W_2 \subseteq V$, $\vec{\mathbf{0}} \in W_2$, $\mathbf{u}, \mathbf{v} \in W_2 \implies \mathbf{u} + \mathbf{v} \in W_2$, $\alpha \mathbf{v} \in W_2$ Thus, $W_1 \cap W_2 \subseteq V$ since $W_1 \cap W_2 \subseteq W_1 \subseteq V$. Moreover:

$$\begin{array}{cccc} \vec{\mathbf{0}} \in W_1, \, \vec{\mathbf{0}} \in W_2 & \Longrightarrow & \vec{\mathbf{0}} \in W_1 \cap W_2 & (\text{Contains zero vector}) \\ \mathbf{u} + \mathbf{v} \in W_1, \, \mathbf{u} + \mathbf{v} \in W_2 & \Longrightarrow & \mathbf{u} + \mathbf{v} \in W_1 \cap W_2 & (\text{Closure under VA}) \\ \alpha \mathbf{v} \in W_1, \, \alpha \mathbf{v} \in W_2 & \Longrightarrow & \alpha \mathbf{v} \in W_1 \cap W_2 & (\text{Closure under SM}) \end{array}$$

Therefore, $W_1 \cap W_2$ is a subspace of *V*.

WEX 4-3-1: Show that $W = \{(x, y) \in \mathbb{R}^2 : 3x - y = 0\}$ is a subspace of \mathbb{R}^2 .

Establishing a Set as a Subspace (Example)

WEX 4-3-1: Show that $W = \{(x, y) \in \mathbb{R}^2 : 3x - y = 0\}$ is a subspace of \mathbb{R}^2 .

Observe that, clearly, $W \subseteq \mathbb{R}^2$ (since every element of W is an element of \mathbb{R}^2) Observe that the zero vector $\vec{\mathbf{0}} = (0,0) \in W$ since 3(0) - (0) = 0

Let
$$\mathbf{u} = (u_1, u_2) \in W$$
, $\mathbf{v} = (v_1, v_2) \in W$, $\alpha \in \mathbb{R}$. Then:
Since $\mathbf{u}, \mathbf{v} \in W$, $3u_1 - u_2 = 0$ and $3v_1 - v_2 = 0$
 $\implies (3u_1 - u_2) + (3v_1 - v_2) = 0 + 0$ (add the two equations)
 $\implies (3u_1 + 3v_1) + (-u_2 - v_2) = 0$
 $\implies 3(u_1 + v_1) - (u_2 + v_2) = 0$
 $\implies (u_1 + v_1, u_2 + v_2) \in W$
 $\implies \mathbf{u} + \mathbf{v} \in W$
Similarly, $3v_1 - v_2 = 0$
 $\implies \alpha(3v_1 - v_2) = \alpha(0)$ (multiply both sides of equation by scalar α)
 $\implies 3\alpha v_1 - \alpha v_2 = 0$
 $\implies 3(\alpha v_1) - (\alpha v_2) = 0$
 $\implies (\alpha v_1, \alpha v_2) \in W$
 $\implies \alpha \mathbf{v} \in W$

Therefore, *W* is a subspace of \mathbb{R}^2 .

Corollary

(When a Set is not a Subspace)

W is **not** a subspace of vector space V if at least one of the following is true:

- W is not a subset of V: $W \not\subseteq V$
- The zero vector is not in W: $\vec{0} \notin W$
- Closure of Vector Addition fails: $\exists u, v \in W$ such that $u + v \notin W$
- Closure of Scalar Multiplication fails: $\exists v \in W, \alpha \in \mathbb{R}$ such that $\alpha v \notin W$

<u>REMARK:</u> Always assume that the operations of vector addition & scalar multiplication are the standard definitions.

One could define these operations in other ways, but such scenarios are dealt with extensively in **Abstract Algebra**.

WEX 4-3-2: Show that $W = \{(x, y) \in \mathbb{R}^2 : 3x - y = 4\}$ is <u>not</u> a subspace of \mathbb{R}^2 .

WEX 4-3-2: Show that $W = \{(x, y) \in \mathbb{R}^2 : 3x - y = 4\}$ is <u>not</u> a subspace of \mathbb{R}^2 . There are three ways to show this, but writing only one of them is sufficient: (First way)

Observe that, clearly, $W \subseteq \mathbb{R}^2$ (since every element of W is an element of \mathbb{R}^2) Observe that the **zero vector** $\vec{\mathbf{0}} = (0,0) \notin W$ since $3(0) - (0) = \mathbf{0} \neq 4$

 \therefore Zero Vector is <u>not</u> contained in *W*.

Therefore, *W* is <u>not</u> a subspace of \mathbb{R}^2 .

Showing that a Set is **<u>not</u>** a Subspace (Example)

WEX 4-3-2: Show that $W = \{(x, y) \in \mathbb{R}^2 : 3x - y = 4\}$ is <u>not</u> a subspace of \mathbb{R}^2 .

There are three ways to show this, but writing only one of them is sufficient: (Second way)

Observe that, clearly, $W \subseteq \mathbb{R}^2$ (since every element of *W* is an element of \mathbb{R}^2)

Let $\mathbf{u} = (u_1, u_2) \in W$, $\mathbf{v} = (v_1, v_2) \in W$ Then, $3u_1 - u_2 = 4$ and $3v_1 - v_2 = 4$ $\implies (3u_1 - u_2) + (3v_1 - v_2) = 4 + 4$ $\implies (3u_1 + 3v_1) + (-u_2 - v_2) = 8$ $\implies 3(u_1 + v_1) - (u_2 + v_2) = 8$ $\implies (u_1 + v_1, u_2 + v_2) \notin W$ (so

(add the two equations)

(since RHS of previous eqn is 8, not 4)

 \therefore Vector Addition is <u>not</u> closed in *W*.

Therefore, *W* is <u>not</u> a subspace of \mathbb{R}^2 .

Showing that a Set is **<u>not</u>** a Subspace (Example)

WEX 4-3-2: Show that $W = \{(x, y) \in \mathbb{R}^2 : 3x - y = 4\}$ is <u>not</u> a subspace of \mathbb{R}^2 .

There are three ways to show this, but writing only one of them is sufficient: (Third way)

Observe that, clearly, $W \subseteq \mathbb{R}^2$ (since every element of W is an element of \mathbb{R}^2)

 \therefore Scalar Multiplication is <u>not</u> closed in *W*.

Therefore, *W* is <u>not</u> a subspace of \mathbb{R}^2 .

Linearity of Differentiation & Integration (Review)

Theorem

(Linearity of 1st-order Derivatives) Let $f, g \in C^1[a, b]$ and $\alpha \in \mathbb{R}$. Then:

$$[f+g]'(x) \equiv \frac{d}{dx} [f(x)+g(x)] = \frac{d}{dx} [f(x)] + \frac{d}{dx} [g(x)] \equiv f'(x) + g'(x)$$

$$[\alpha f]'(x) \equiv \frac{d}{dx} [\alpha f(x)] = \alpha \frac{d}{dx} [f(x)] \equiv \alpha f'(x)$$

PROOF:

$$\begin{aligned} \left[f+g\right]'(x) &:= \lim_{\Delta x \to 0} \frac{\left[f(x+\Delta x)+g(x+\Delta x)\right]-\left[f(x)+g(x)\right]}{\Delta x} \\ &= \lim_{\Delta x \to 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} + \lim_{\Delta x \to 0} \frac{g(x+\Delta x)-g(x)}{\Delta x} \\ &:= f'(x)+g'(x) \end{aligned}$$

Linearity of Differentiation & Integration (Review)

Theorem

(Linearity of 1st-order Derivatives) Let $f, g \in C^1[a, b]$ and $\alpha \in \mathbb{R}$. Then:

$$[f+g]'(x) \equiv \frac{d}{dx} [f(x)+g(x)] = \frac{d}{dx} [f(x)] + \frac{d}{dx} [g(x)] \equiv f'(x) + g'(x)$$

$$[\alpha f]'(x) \equiv \frac{d}{dx} [\alpha f(x)] = \alpha \frac{d}{dx} [f(x)] \equiv \alpha f'(x)$$

PROOF:

$$[\alpha f]'(x) := \lim_{\Delta x \to 0} \frac{[\alpha f(x + \Delta x)] - [\alpha f(x)]}{\Delta x}$$
$$= \alpha \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$
$$:= \alpha f'(x) \quad \mathsf{QED}$$

Corollary

(Linearity of higher-order Derivatives)

Let $f,g \in C^k[a,b]$ where k > 1 is an integer and $\alpha \in \mathbb{R}$. Then:

$$[f+g]^{(k)}(x) \equiv \frac{d^k}{dx^k} \Big[f(x) + g(x) \Big] = \frac{d^k}{dx^k} \Big[f(x) \Big] + \frac{d^k}{dx^k} \Big[g(x) \Big] \equiv f^{(k)}(x) + g^{(k)}(x) = \frac{d^k}{dx^k} \Big[\alpha f(x) \Big] = \alpha \frac{d^k}{dx^k} \Big[f(x) \Big] \equiv \alpha f^{(k)}(x)$$

PROOF: Apply the previous theorem k times. QED

Linearity of Differentiation & Integration (Review)

Theorem

(Linearity of Definite Integrals) Let $f, g \in C[a, b]$ and $\alpha \in \mathbb{R}$. Then: $\int_{a}^{b} \left[f(x) + g(x) \right] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$ $\int_{a}^{b} \left[\alpha f(x) \right] dx = \alpha \int_{a}^{b} f(x) dx$ **<u>PROOF:</u>** $\int_{a}^{b} \left[f(x) + g(x) \right] dx \quad := \quad \lim_{N \to \infty} \sum_{k=1}^{N} \left[f(x_k^*) + g(x_k^*) \right] \Delta_k$ $= \lim_{N \to \infty} \sum_{k=1}^{N} f(x_k^*) \Delta_k + \lim_{N \to \infty} \sum_{k=1}^{N} g(x_k^*) \Delta_k$ $:= \int_{a}^{b} f(x) \, dx + \int_{a}^{b} g(x) \, dx$

Linearity of Differentiation & Integration (Review)

Theorem

(Linearity of Definite Integrals) Let $f, g \in C[a, b]$ and $\alpha \in \mathbb{R}$. Then: $\int_{a}^{b} \left[f(x) + g(x) \right] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$ $\int_{a}^{b} \left[\alpha f(x) \right] dx = \alpha \int_{a}^{b} f(x) dx$ <u>**PROOF:**</u> $\int_{a}^{b} \left[\alpha f(x) \right] dx := \lim_{N \to \infty} \sum_{k=1}^{N} \alpha f(x_{k}^{*}) \Delta_{k}$ $= \alpha \lim_{N \to \infty} \sum_{k=1}^{\cdots} f(x_k^*) \Delta_k$

 $:= \alpha \int^{b} f(x) dx$ QED

WEX 4-3-3: Show: $W = \{p(t) \in P_2 : p'''(2) = 5\}$ is <u>not</u> a subspace of P_2 .

WEX 4-3-3: Show: $W = \{p(t) \in P_2 : p'''(2) = 5\}$ is <u>not</u> a subspace of P_2 .

There are three ways to show this, but writing only one of them is sufficient: (First way)

Observe that, clearly, $W \subseteq P_2$ (since every element of *W* is an element of P_2) Observe that the **zero vector** $z(t) = 0t^2 + 0t + 0 \notin W$ since $z'''(2) = 0 \neq 5$

- \therefore The Zero Vector is <u>not</u> contained in *W*.
- \therefore *W* is <u>not</u> a subspace of *P*₂.

Showing that a Set is **<u>not</u>** a Subspace (Example)

WEX 4-3-3: Show: $W = \{p(t) \in P_2 : p'''(2) = 5\}$ is <u>not</u> a subspace of P_2 .

There are three ways to show this, but writing only one of them is sufficient: (Second way)

Observe that, clearly, $W \subseteq P_2$ (since every element of W is an element of P_2) Let $p(t) \in W$, $q(t) \in W$. Then, p'''(2) = 5 and q'''(2) = 5 $\implies [p+q]'''(2) = p'''(2) + q'''(2) = 5 + 5 = 10$ $\implies p(t) + q(t) \notin W$ (since $[p+q]'''(2) \neq 5$)

- \therefore Vector Addition is <u>not</u> closed in *W*.
- \therefore W is <u>not</u> a subspace of P_2 .

Showing that a Set is **<u>not</u>** a Subspace (Example)

WEX 4-3-3: Show: $W = \{p(t) \in P_2 : p'''(2) = 5\}$ is <u>not</u> a subspace of P_2 .

There are three ways to show this, but writing only one of them is sufficient: (Third way)

Observe that, clearly, $W \subseteq P_2$ (since every element of W is an element of P_2)

Let $p(t) \in W$ and $\alpha \neq 1$. Then, p'''(2) = 5

$$\implies [\alpha p]'''(2) \equiv \frac{d^3}{dt^3} \Big[\alpha p(t) \Big] \Big|_{t=2} = \alpha \frac{d^3}{dt^3} \Big[p(t) \Big] \Big|_{t=2} \equiv \alpha [p'''(2)] = 5\alpha \neq 5$$

$$\implies \alpha p(t) \notin W \qquad (since \ [\alpha p]'''(2) \neq 5 \ for \ \alpha \neq 1)$$

- \therefore Scalar Multiplication is <u>not</u> closed in *W*.
- \therefore W is <u>not</u> a subspace of P_2 .

Fin.