Subspaces

Linear Algebra

Josh Engwer

TTU
02 October 2015

Common Vector Spaces (Review)

$$
\begin{aligned}
\mathbb{R} & \equiv \text { Set of all real numbers (scalars) } \\
\mathbb{R}^{2} & \equiv \text { Set of all ordered pairs (2-wide vectors) } \\
\mathbb{R}^{3} & \equiv \text { Set of all ordered triples (3-wide vectors) } \\
\mathbb{R}^{n} & \equiv \text { Set of all ordered } n \text {-tuples (} n \text {-wide vectors) } \\
\mathbb{R}^{m \times n} & \equiv \text { Set of all } m \times n \text { matrices } \\
\mathbb{R}^{n \times n} & \equiv \text { Set of all } n \times n \text { square matrices } \\
P & \equiv \text { Set of all polynomials } \\
P_{n} & \equiv \text { Set of all polynomials of degree } n \text { or less } \\
C[a, b] & \equiv \text { Set of all continuous functions on }[a, b] \\
C^{1}[a, b] & \equiv \text { Set of all differentiable functions on }[a, b] \\
C^{2}[a, b] & \equiv \text { Set of all twice-differentiable fcns on }[a, b] \\
C(-\infty, \infty) & \equiv \text { Set of all continuous functions on }(-\infty, \infty)
\end{aligned}
$$

REMARK: Always assume that the operations of vector addition \& scalar multiplication are the standard definitions.
One could define these operations in other ways, but such scenarios are dealt with extensively in Abstract Algebra. (MATH 3360)

Common Vector Spaces

VECTOR SPACE	EXAMPLE "VECTORS"	"ZERO VECTOR"
\mathbb{R}	Scalars: $a=-3 / 2, b=\sqrt{2}, c=\pi$	0
\mathbb{R}^{2}	Vectors: $\mathbf{u}=(-3,4), \mathbf{v}=(\sqrt{2}, \pi)$	$\overrightarrow{\mathbf{0}}=(0,0)$
\mathbb{R}^{3}	Vectors: $(1,1,1),(\sqrt{2}, \pi,-1)$	$\overrightarrow{\mathbf{0}}=(0,0,0)$
$\mathbb{R}^{3 \times 2}$	3×2 Matrices: $\left[\begin{array}{cc}1 & 2 \\ -3 & \sqrt{5} \\ -\pi & 1 / 6\end{array}\right]$	$O_{3 \times 2}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right]$
$\mathbb{R}^{2 \times 2}$	2×2 Matrices: $\left[\begin{array}{cc}1 & 2 \\ -3 & \sqrt{5}\end{array}\right]$	$O_{2 \times 2}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
P_{1}	Polynomials: $p(t)=3, q(t)=4-2 t$	$z(t)=0+0 t$
P_{2}	Polynomials: $3,4-2 t, 5+t-7 t^{2}$	$z(t)=0+0 t+0 t^{2}$
P_{3}	Polynomials: $3-4 t+2 t^{2}+5 t^{3}$	$0+0 t+0 t^{2}+0 t^{3}$
$C[0,1]$	Functions: $x^{2}, \sin x, \sqrt{1+x}, \frac{1}{x-2}$	$z(x)=0$ on $[0,1]$
$C(-\infty, \infty)$	Functions: $x^{2}, \sin x, e^{x}, \sqrt[3]{x},\|x\|$	$z(x)=0$
$C^{1}(-\infty, \infty)$	Functions: $f(x)=x^{2}, \sin x, e^{x}$	$z(x)=0$

REMARK: Always assume that the operations of vector addition \& scalar multiplication are the standard definitions.

Subspace (Definition)

Often in applications, interesting behavior occurs not in an entire vector space, but rather a subset of it that itself acts like a vector space. Such a subset of a vector space is called a subspace:

Definition

(Subspace)
Let V be a vector space.
Then a nonempty set W is a subspace of V if the following all hold:

$$
\begin{aligned}
& W \subseteq V \\
& \overrightarrow{\mathbf{0}} \in W
\end{aligned}
$$

(W is a subset of V)
(W contains the zero vector)
(W is closed under scalar multiplication)

$$
\mathbf{u}, \mathbf{v} \in W \Longrightarrow \mathbf{u}+\mathbf{v} \in W \quad(W \text { is closed under vector addition })
$$

$$
\mathbf{v} \in W, \alpha \in \mathbb{R} \Longrightarrow \alpha \mathbf{v} \in W
$$

Trivial Subspaces of a Vector Space

Every vector space has two trivial subspaces:

Corollary

(Trivial Subspaces)
Let V be a vector space. Then $\{\overrightarrow{\mathbf{0}}\}$ and V are the two trivial subspaces of V.
REMARK: $\{\overrightarrow{\boldsymbol{0}}\}$ is sometimes called the zero subspace.

Trivial Subspaces of a Vector Space

Every vector space has two trivial subspaces:

Corollary

(Trivial Subspaces)
Let V be a vector space. Then $\{\overrightarrow{\mathbf{0}}\}$ and V are the two trivial subspaces of V.

PROOF: Since V is a vector space, it's closed under vector addition \& scalar multiplication, and $\overrightarrow{\boldsymbol{0}} \in V$.
Moreover, a set is a subset of itself: $V \subseteq V$. Thus, V is a subspace of V.
As for the other set, let $W_{0}=\{\overrightarrow{\mathbf{0}}\}$ and $\alpha \in \mathbb{R}$. Then:
$\overrightarrow{\mathbf{0}} \in W_{0} \quad$ (In fact, $\overrightarrow{\boldsymbol{0}}$ is the only vector in W_{0})
$W_{0} \subseteq V$
$\overrightarrow{\mathbf{0}}+\overrightarrow{\mathbf{0}}=\overrightarrow{\mathbf{0}} \in W_{0} \Longrightarrow W_{0}$ is closed under vector addition.
$\alpha(\overrightarrow{\boldsymbol{0}})=\overrightarrow{\boldsymbol{0}} \in W_{0} \Longrightarrow W_{0}$ is closed under scalar multiplication.
Thus, $W_{0}=\{\overrightarrow{\boldsymbol{0}}\}$ is a subspace of V.

The Intersection of Two Subspaces is a Subspace

Theorem

(The Intersection of Two Subspaces is a Subspace)
Let W_{1}, W_{2} both be subspaces of vector space V. Then, $W_{1} \cap W_{2}$ is a subspace of V.

The Intersection of Two Subspaces is a Subspace

Theorem

(The Intersection of Two Subspaces is a Subspace)
Let W_{1}, W_{2} both be subspaces of vector space V.
Then, $W_{1} \cap W_{2}$ is a subspace of V.

PROOF: First observe that $W_{1} \cap W_{2} \subseteq W_{1}, W_{1} \cap W_{2} \subseteq W_{2}$.
Let $\alpha \in \mathbb{R}$ and $\mathbf{u}, \mathbf{v} \in W_{1} \cap W_{2}$. Then:
Since W_{1} is a subspace, $W_{1} \subseteq V, \overrightarrow{\boldsymbol{0}} \in W_{1}, \mathbf{u}, \mathbf{v} \in W_{1} \Longrightarrow \mathbf{u}+\mathbf{v} \in W_{1}, \alpha \mathbf{v} \in W_{1}$ Since W_{2} is a subspace, $W_{2} \subseteq V, \overrightarrow{\mathbf{0}} \in W_{2}, \mathbf{u}, \mathbf{v} \in W_{2} \Longrightarrow \mathbf{u}+\mathbf{v} \in W_{2}, \alpha \mathbf{v} \in W_{2}$ Thus, $\quad W_{1} \cap W_{2} \subseteq V$ since $W_{1} \cap W_{2} \subseteq W_{1} \subseteq V$. Moreover:

$$
\begin{array}{clrl}
\overrightarrow{\mathbf{0}} \in W_{1}, \overrightarrow{\mathbf{0}} \in W_{2} & \Longrightarrow & \overrightarrow{\mathbf{0}} \in W_{1} \cap W_{2} & \text { (Contains zero vector) } \\
\mathbf{u}+\mathbf{v} \in W_{1}, \mathbf{u}+\mathbf{v} \in W_{2} & \Longrightarrow & \mathbf{u}+\mathbf{v} \in W_{1} \cap W_{2} & \text { (Closure under VA) } \\
\alpha \mathbf{v} \in W_{1}, \alpha \mathbf{v} \in W_{2} & \Longrightarrow & \alpha \mathbf{v} \in W_{1} \cap W_{2} & \text { (Closure under SM) }
\end{array}
$$

Therefore, $W_{1} \cap W_{2}$ is a subspace of V.

Establishing a Set as a Subspace (Example)

WEX 4-3-1: Show that $W=\left\{(x, y) \in \mathbb{R}^{2}: 3 x-y=0\right\}$ is a subspace of \mathbb{R}^{2}.

Establishing a Set as a Subspace (Example)

WEX 4-3-1: Show that $W=\left\{(x, y) \in \mathbb{R}^{2}: 3 x-y=0\right\}$ is a subspace of \mathbb{R}^{2}.
Observe that, clearly, $W \subseteq \mathbb{R}^{2}$ (since every element of W is an element of \mathbb{R}^{2})
Observe that the zero vector $\overrightarrow{\boldsymbol{0}}=(0,0) \in W$ since $3(0)-(0)=0$
Let $\mathbf{u}=\left(u_{1}, u_{2}\right) \in W, \mathbf{v}=\left(v_{1}, v_{2}\right) \in W, \alpha \in \mathbb{R}$. Then:
Since $\mathbf{u}, \mathbf{v} \in W, 3 u_{1}-u_{2}=0$ and $3 v_{1}-v_{2}=0$
$\Longrightarrow\left(3 u_{1}-u_{2}\right)+\left(3 v_{1}-v_{2}\right)=0+0$
$\Longrightarrow\left(3 u_{1}+3 v_{1}\right)+\left(-u_{2}-v_{2}\right)=0$
$\Longrightarrow 3\left(u_{1}+v_{1}\right)-\left(u_{2}+v_{2}\right)=0$
$\Longrightarrow\left(u_{1}+v_{1}, u_{2}+v_{2}\right) \in W$
$\Longrightarrow \mathbf{u}+\mathbf{v} \in W$
Similarly, $3 v_{1}-v_{2}=0$

$$
\begin{aligned}
& \Longrightarrow \alpha\left(3 v_{1}-v_{2}\right)=\alpha(0) \\
& \Longrightarrow 3 \alpha v_{1}-\alpha v_{2}=0 \\
& \Longrightarrow 3\left(\alpha v_{1}\right)-\left(\alpha v_{2}\right)=0 \\
& \Longrightarrow\left(\alpha v_{1}, \alpha v_{2}\right) \in W \\
& \Longrightarrow \alpha \mathbf{v} \in W
\end{aligned}
$$

(multiply both sides of equation by scalar α)

Therefore, W is a subspace of \mathbb{R}^{2}.

Establishing that a Set is not a Subspace

Corollary

(When a Set is not a Subspace)
W is not a subspace of vector space V if at least one of the following is true:

- W is not a subset of V : $W \nsubseteq V$
- The zero vector is not in W : $\overrightarrow{\mathbf{0}} \notin W$
- Closure of Vector Addition fails: $\exists \mathbf{u}, \mathbf{v} \in W$ such that $\mathbf{u}+\mathbf{v} \notin W$
- Closure of Scalar Multiplication fails: $\exists \mathbf{v} \in W, \alpha \in \mathbb{R}$ such that $\alpha \mathbf{v} \notin W$

REMARK: Always assume that the operations of vector addition \& scalar multiplication are the standard definitions.
One could define these operations in other ways, but such scenarios are dealt with extensively in Abstract Algebra.

Showing that a Set is not a Subspace (Example)

WEX 4-3-2: Show that $W=\left\{(x, y) \in \mathbb{R}^{2}: 3 x-y=4\right\}$ is not a subspace of \mathbb{R}^{2}.

Showing that a Set is not a Subspace (Example)

WEX 4-3-2: Show that $W=\left\{(x, y) \in \mathbb{R}^{2}: 3 x-y=4\right\}$ is not a subspace of \mathbb{R}^{2}.
There are three ways to show this, but writing only one of them is sufficient:
(First way)
Observe that, clearly, $W \subseteq \mathbb{R}^{2}$ (since every element of W is an element of \mathbb{R}^{2})
Observe that the zero vector $\overrightarrow{\mathbf{0}}=(0,0) \notin W$ since $3(0)-(0)=0 \neq 4$
\therefore Zero Vector is not contained in W.
Therefore, W is not a subspace of \mathbb{R}^{2}.

Showing that a Set is not a Subspace (Example)

WEX 4-3-2: Show that $W=\left\{(x, y) \in \mathbb{R}^{2}: 3 x-y=4\right\}$ is not a subspace of \mathbb{R}^{2}.
There are three ways to show this, but writing only one of them is sufficient:
(Second way)
Observe that, clearly, $W \subseteq \mathbb{R}^{2}$ (since every element of W is an element of \mathbb{R}^{2})
Let $\mathbf{u}=\left(u_{1}, u_{2}\right) \in W, \mathbf{v}=\left(v_{1}, v_{2}\right) \in W$
Then, $3 u_{1}-u_{2}=4$ and $3 v_{1}-v_{2}=4$
$\Longrightarrow\left(3 u_{1}-u_{2}\right)+\left(3 v_{1}-v_{2}\right)=4+4 \quad$ (add the two equations)
$\Longrightarrow\left(3 u_{1}+3 v_{1}\right)+\left(-u_{2}-v_{2}\right)=8$
$\Longrightarrow 3\left(u_{1}+v_{1}\right)-\left(u_{2}+v_{2}\right)=8$
$\Longrightarrow\left(u_{1}+v_{1}, u_{2}+v_{2}\right) \notin W \quad$ (since RHS of previous eqn is 8 , not 4)
$\Longrightarrow \mathbf{u}+\mathbf{v} \notin W$
\therefore Vector Addition is not closed in W.
Therefore, W is not a subspace of \mathbb{R}^{2}.

Showing that a Set is not a Subspace (Example)

WEX 4-3-2: Show that $W=\left\{(x, y) \in \mathbb{R}^{2}: 3 x-y=4\right\}$ is not a subspace of \mathbb{R}^{2}.
There are three ways to show this, but writing only one of them is sufficient:
(Third way)
Observe that, clearly, $W \subseteq \mathbb{R}^{2}$ (since every element of W is an element of \mathbb{R}^{2})
Let $\mathbf{v}=\left(v_{1}, v_{2}\right) \in W, \alpha \in \mathbb{R}$
Then, $3 v_{1}-v_{2}=4$
$\Longrightarrow \alpha\left(3 v_{1}-v_{2}\right)=\alpha(4) \quad$ (multiply equation by scalar α)
$\Longrightarrow 3 \alpha v_{1}-\alpha v_{2}=4 \alpha$
$\Longrightarrow 3\left(\alpha v_{1}\right)-\left(\alpha v_{2}\right)=4 \alpha$
$\Longrightarrow\left(\alpha v_{1}, \alpha v_{2}\right) \notin W \quad$ (since RHS of previous eqn is not 4 if $\alpha \neq 1$)
$\Longrightarrow \alpha \mathbf{v} \notin W$
\therefore Scalar Multiplication is not closed in W.
Therefore, W is not a subspace of \mathbb{R}^{2}.

Linearity of Differentiation \& Integration (Review)

Theorem

(Linearity of $1^{\text {st }}$-order Derivatives)
Let $f, g \in C^{1}[a, b]$ and $\alpha \in \mathbb{R}$. Then:

$$
\left.\left.\begin{array}{rl}
{[f+g]^{\prime}(x)} & \equiv \frac{d}{d x}[f(x)+g(x)]
\end{array}\right) \frac{d}{d x}[f(x)]+\frac{d}{d x}[g(x)] \equiv f^{\prime}(x)+g^{\prime}(x)\right]=\alpha \frac{d}{d x}[f(x)] \equiv \alpha f^{\prime}(x)
$$

PROOF:

$$
\begin{aligned}
{[f+g]^{\prime}(x) } & :=\lim _{\Delta x \rightarrow 0} \frac{[f(x+\Delta x)+g(x+\Delta x)]-[f(x)+g(x)]}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}+\lim _{\Delta x \rightarrow 0} \frac{g(x+\Delta x)-g(x)}{\Delta x} \\
& :=f^{\prime}(x)+g^{\prime}(x)
\end{aligned}
$$

Linearity of Differentiation \& Integration (Review)

Theorem

(Linearity of $1^{\text {st }}$-order Derivatives)
Let $f, g \in C^{1}[a, b]$ and $\alpha \in \mathbb{R}$. Then:

$$
\begin{aligned}
{[f+g]^{\prime}(x) \equiv \frac{d}{d x}[f(x)+g(x)] } & =\frac{d}{d x}[f(x)]+\frac{d}{d x}[g(x)]
\end{aligned} \begin{aligned}
& \equiv f^{\prime}(x)+g^{\prime}(x) \\
{[\alpha f]^{\prime}(x) } & \equiv \frac{d}{d x}[\alpha f(x)]
\end{aligned}=\alpha \frac{d}{d x}[f(x)] \equiv \alpha f^{\prime}(x)
$$

PROOF:

$$
\begin{aligned}
{[\alpha f]^{\prime}(x) } & :=\lim _{\Delta x \rightarrow 0} \frac{[\alpha f(x+\Delta x)]-[\alpha f(x)]}{\Delta x} \\
& =\alpha \lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} \\
& :=\alpha f^{\prime}(x) \text { QED }
\end{aligned}
$$

Linearity of Differentiation \& Integration (Review)

Corollary

(Linearity of higher-order Derivatives)
Let $f, g \in C^{k}[a, b]$ where $k>1$ is an integer and $\alpha \in \mathbb{R}$. Then:

$$
\begin{aligned}
{[f+g]^{(k)}(x) } & \equiv \frac{d^{k}}{d x^{k}}[f(x)+g(x)]
\end{aligned} \begin{aligned}
& =\frac{d^{k}}{d x^{k}}[f(x)]+\frac{d^{k}}{d x^{k}}[g(x)]
\end{aligned} \begin{aligned}
& \equiv f^{(k)}(x)+g \\
& {[\alpha f]^{(k)}(x)}
\end{aligned}>\frac{d^{k}}{d x^{k}}[\alpha f(x)] \equiv \alpha \frac{d^{k}}{d x^{k}}[f(x)] \quad \equiv \alpha f^{(k)}(x)
$$

PROOF: Apply the previous theorem k times. QED

Linearity of Differentiation \& Integration (Review)

Theorem

(Linearity of Definite Integrals)
Let $f, g \in C[a, b]$ and $\alpha \in \mathbb{R}$. Then:

$$
\begin{aligned}
\int_{a}^{b}[f(x)+g(x)] d x & =\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x \\
\int_{a}^{b}[\alpha f(x)] d x & =\alpha \int_{a}^{b} f(x) d x
\end{aligned}
$$

PROOF: $\int_{a}^{b}[f(x)+g(x)] d x:=\lim _{N \rightarrow \infty} \sum_{k=1}^{N}\left[f\left(x_{k}^{*}\right)+g\left(x_{k}^{*}\right)\right] \Delta_{k}$

$$
\begin{aligned}
& =\lim _{N \rightarrow \infty} \sum_{k=1}^{N} f\left(x_{k}^{*}\right) \Delta_{k}+\lim _{N \rightarrow \infty} \sum_{k=1}^{N} g\left(x_{k}^{*}\right) \Delta_{k} \\
& :=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x
\end{aligned}
$$

Linearity of Differentiation \& Integration (Review)

Theorem

(Linearity of Definite Integrals)
Let $f, g \in C[a, b]$ and $\alpha \in \mathbb{R}$. Then:

$$
\begin{aligned}
\int_{a}^{b}[f(x)+g(x)] d x & =\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x \\
\int_{a}^{b}[\alpha f(x)] d x & =\alpha \int_{a}^{b} f(x) d x
\end{aligned}
$$

PROOF: $\int_{a}^{b}[\alpha f(x)] d x:=\lim _{N \rightarrow \infty} \sum_{k=1}^{N} \alpha f\left(x_{k}^{*}\right) \Delta_{k}$

$$
=\alpha \lim _{N \rightarrow \infty} \sum_{k=1}^{N} f\left(x_{k}^{*}\right) \Delta_{k}
$$

$$
:=\alpha \int_{a}^{b} f(x) d x \quad \text { QED }
$$

Showing that a Set is not a Subspace (Example)

WEX 4-3-3: Show: $W=\left\{p(t) \in P_{2}: p^{\prime \prime \prime}(2)=5\right\}$ is not a subspace of P_{2}.

Showing that a Set is not a Subspace (Example)

WEX 4-3-3: Show: $W=\left\{p(t) \in P_{2}: p^{\prime \prime \prime}(2)=5\right\}$ is not a subspace of P_{2}.
There are three ways to show this, but writing only one of them is sufficient:
(First way)
Observe that, clearly, $W \subseteq P_{2}$ (since every element of W is an element of P_{2})
Observe that the zero vector $z(t)=0 t^{2}+0 t+0 \notin W$ since $z^{\prime \prime \prime}(2)=0 \neq 5$
$\therefore \quad$ The Zero Vector is not contained in W.
$\therefore W$ is not a subspace of P_{2}.

Showing that a Set is not a Subspace (Example)

WEX 4-3-3: Show: $W=\left\{p(t) \in P_{2}: p^{\prime \prime \prime}(2)=5\right\}$ is not a subspace of P_{2}.
There are three ways to show this, but writing only one of them is sufficient: (Second way)

Observe that, clearly, $W \subseteq P_{2}$ (since every element of W is an element of P_{2})
Let $p(t) \in W, q(t) \in W$. Then, $p^{\prime \prime \prime}(2)=5$ and $q^{\prime \prime \prime}(2)=5$
$\Longrightarrow[p+q]^{\prime \prime \prime}(2)=p^{\prime \prime \prime}(2)+q^{\prime \prime \prime}(2)=5+5=10$
$\Longrightarrow p(t)+q(t) \notin W \quad\left(\right.$ since $\left.[p+q]^{\prime \prime \prime}(2) \neq 5\right)$
\therefore Vector Addition is not closed in W.
$\therefore W$ is not a subspace of P_{2}.

Showing that a Set is not a Subspace (Example)

WEX 4-3-3: Show: $W=\left\{p(t) \in P_{2}: p^{\prime \prime \prime}(2)=5\right\}$ is not a subspace of P_{2}.
There are three ways to show this, but writing only one of them is sufficient:
(Third way)
Observe that, clearly, $W \subseteq P_{2}$ (since every element of W is an element of P_{2})
Let $p(t) \in W$ and $\alpha \neq 1$. Then, $p^{\prime \prime \prime}(2)=5$

$$
\begin{aligned}
& \left.\Longrightarrow[\alpha p]^{\prime \prime \prime}(2) \equiv \frac{d^{3}}{d t^{3}}[\alpha p(t)]\right|_{t=2}=\left.\alpha \frac{d^{3}}{d t^{3}}[p(t)]\right|_{t=2} \equiv \alpha\left[p^{\prime \prime \prime}(2)\right]=5 \alpha \neq 5 \\
& \left.\Longrightarrow \alpha p(t) \notin W \quad \text { (since }[\alpha p]^{\prime \prime \prime}(2) \neq 5 \text { for } \alpha \neq 1\right)
\end{aligned}
$$

\therefore Scalar Multiplication is not closed in W.
$\therefore W$ is not a subspace of P_{2}.

Fin.

