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Common Vector Spaces (Review)

R ≡ Set of all real numbers (scalars)
R2 ≡ Set of all ordered pairs (2-wide vectors)
R3 ≡ Set of all ordered triples (3-wide vectors)
Rn ≡ Set of all ordered n-tuples (n-wide vectors)

Rm×n ≡ Set of all m× n matrices
Rn×n ≡ Set of all n× n square matrices

P ≡ Set of all polynomials
Pn ≡ Set of all polynomials of degree n or less

C[a, b] ≡ Set of all continuous functions on [a, b]
C1[a, b] ≡ Set of all differentiable functions on [a, b]
C2[a, b] ≡ Set of all twice-differentiable fcns on [a, b]

C(−∞,∞) ≡ Set of all continuous functions on (−∞,∞)

REMARK: Always assume that the operations of vector addition & scalar
multiplication are the standard definitions.

One could define these operations in other ways, but such scenarios are dealt
with extensively in Abstract Algebra. (MATH 3360)
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Common Vector Spaces

VECTOR SPACE EXAMPLE ”VECTORS” ”ZERO VECTOR”
R Scalars: a = −3/2, b =

√
2, c = π 0

R2 Vectors: u = (−3, 4), v = (
√

2, π) ~0 = (0, 0)

R3 Vectors: (1, 1, 1), (
√

2, π,−1) ~0 = (0, 0, 0)

R3×2 3× 2 Matrices:

 1 2
−3

√
5

−π 1/6

 O3×2 =

 0 0
0 0
0 0


R2×2 2× 2 Matrices:

[
1 2
−3

√
5

]
O2×2 =

[
0 0
0 0

]
P1 Polynomials: p(t) = 3, q(t) = 4− 2t z(t) = 0 + 0t
P2 Polynomials: 3, 4− 2t, 5 + t − 7t2 z(t) = 0 + 0t + 0t2

P3 Polynomials: 3− 4t + 2t2 + 5t3 0 + 0t + 0t2 + 0t3

C[0, 1] Functions: x2, sin x,
√

1 + x, 1
x−2 z(x) = 0 on [0, 1]

C(−∞,∞) Functions: x2, sin x, ex, 3
√

x, |x| z(x) = 0
C1(−∞,∞) Functions: f (x) = x2, sin x, ex z(x) = 0

REMARK: Always assume that the operations of vector addition & scalar
multiplication are the standard definitions.
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Subspace (Definition)

Often in applications, interesting behavior occurs not in an entire vector
space, but rather a subset of it that itself acts like a vector space.
Such a subset of a vector space is called a subspace:

Definition
(Subspace)

Let V be a vector space.
Then a nonempty set W is a subspace of V if the following all hold:

W ⊆ V (W is a subset of V)
~0 ∈ W (W contains the zero vector)

u, v ∈ W =⇒ u + v ∈ W (W is closed under vector addition)
v ∈ W, α ∈ R =⇒ αv ∈ W (W is closed under scalar multiplication)
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Trivial Subspaces of a Vector Space

Every vector space has two trivial subspaces:

Corollary
(Trivial Subspaces)

Let V be a vector space. Then {~0} and V are the two trivial subspaces of V.

REMARK: {~0} is sometimes called the zero subspace.
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Trivial Subspaces of a Vector Space
Every vector space has two trivial subspaces:

Corollary
(Trivial Subspaces)

Let V be a vector space. Then {~0} and V are the two trivial subspaces of V.

PROOF: Since V is a vector space, it’s closed under vector addition & scalar
multiplication, and ~0 ∈ V.
Moreover, a set is a subset of itself: V ⊆ V. Thus, V is a subspace of V.

As for the other set, let W0 = {~0} and α ∈ R. Then:
~0 ∈ W0 (In fact, ~0 is the only vector in W0)

W0 ⊆ V
~0 +~0 = ~0 ∈ W0 =⇒ W0 is closed under vector addition.

α
(
~0
)

= ~0 ∈ W0 =⇒ W0 is closed under scalar multiplication.

Thus, W0 = {~0} is a subspace of V. QED
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The Intersection of Two Subspaces is a Subspace

Theorem
(The Intersection of Two Subspaces is a Subspace)

Let W1,W2 both be subspaces of vector space V.
Then, W1 ∩W2 is a subspace of V.
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The Intersection of Two Subspaces is a Subspace

Theorem
(The Intersection of Two Subspaces is a Subspace)

Let W1,W2 both be subspaces of vector space V.
Then, W1 ∩W2 is a subspace of V.

PROOF: First observe that W1 ∩W2 ⊆ W1, W1 ∩W2 ⊆ W2.

Let α ∈ R and u, v ∈ W1 ∩W2. Then:

Since W1 is a subspace, W1 ⊆ V, ~0 ∈ W1, u, v ∈ W1 =⇒ u + v ∈ W1, αv ∈ W1
Since W2 is a subspace, W2 ⊆ V, ~0 ∈ W2, u, v ∈ W2 =⇒ u + v ∈ W2, αv ∈ W2

Thus, W1 ∩W2 ⊆ V since W1 ∩W2 ⊆ W1 ⊆ V. Moreover:

~0 ∈ W1, ~0 ∈ W2 =⇒ ~0 ∈ W1 ∩W2 (Contains zero vector)
u + v ∈ W1,u + v ∈ W2 =⇒ u + v ∈ W1 ∩W2 (Closure under VA)
αv ∈ W1, αv ∈ W2 =⇒ αv ∈ W1 ∩W2 (Closure under SM)

Therefore, W1 ∩W2 is a subspace of V. QED
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Establishing a Set as a Subspace (Example)

WEX 4-3-1: Show that W = {(x, y) ∈ R2 : 3x− y = 0} is a subspace of R2.
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Establishing a Set as a Subspace (Example)

WEX 4-3-1: Show that W = {(x, y) ∈ R2 : 3x− y = 0} is a subspace of R2.

Observe that, clearly, W ⊆ R2 (since every element of W is an element of R2)

Observe that the zero vector ~0 = (0, 0) ∈ W since 3(0)− (0) = 0

Let u = (u1, u2) ∈ W, v = (v1, v2) ∈ W, α ∈ R. Then:
Since u, v ∈ W, 3u1 − u2 = 0 and 3v1 − v2 = 0
=⇒ (3u1 − u2) + (3v1 − v2) = 0 + 0 (add the two equations)
=⇒ (3u1 + 3v1) + (−u2 − v2) = 0
=⇒ 3(u1 + v1)− (u2 + v2) = 0
=⇒ (u1 + v1, u2 + v2) ∈ W
=⇒ u + v ∈ W

Similarly, 3v1 − v2 = 0
=⇒ α(3v1 − v2) = α(0) (multiply both sides of equation by scalar α)
=⇒ 3αv1 − αv2 = 0
=⇒ 3(αv1)− (αv2) = 0
=⇒ (αv1, αv2) ∈ W
=⇒ αv ∈ W

Therefore, W is a subspace of R2.
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Establishing that a Set is not a Subspace

Corollary
(When a Set is not a Subspace)

W is not a subspace of vector space V if at least one of the following is true:

W is not a subset of V: W 6⊆ V

The zero vector is not in W: ~0 6∈ W

Closure of Vector Addition fails: ∃u, v ∈ W such that u + v 6∈ W

Closure of Scalar Multiplication fails: ∃v ∈ W, α ∈ R such that αv 6∈ W

REMARK: Always assume that the operations of vector addition & scalar
multiplication are the standard definitions.

One could define these operations in other ways, but such scenarios are dealt
with extensively in Abstract Algebra.
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Showing that a Set is not a Subspace (Example)

WEX 4-3-2: Show that W = {(x, y) ∈ R2 : 3x− y = 4} is not a subspace of R2.
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Showing that a Set is not a Subspace (Example)

WEX 4-3-2: Show that W = {(x, y) ∈ R2 : 3x− y = 4} is not a subspace of R2.

There are three ways to show this, but writing only one of them is sufficient:

(First way)

Observe that, clearly, W ⊆ R2 (since every element of W is an element of R2)

Observe that the zero vector ~0 = (0, 0) 6∈ W since 3(0)− (0) = 0 6= 4

∴ Zero Vector is not contained in W.

Therefore, W is not a subspace of R2.
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Showing that a Set is not a Subspace (Example)

WEX 4-3-2: Show that W = {(x, y) ∈ R2 : 3x− y = 4} is not a subspace of R2.

There are three ways to show this, but writing only one of them is sufficient:

(Second way)

Observe that, clearly, W ⊆ R2 (since every element of W is an element of R2)

Let u = (u1, u2) ∈ W, v = (v1, v2) ∈ W
Then, 3u1 − u2 = 4 and 3v1 − v2 = 4
=⇒ (3u1 − u2) + (3v1 − v2) = 4 + 4 (add the two equations)
=⇒ (3u1 + 3v1) + (−u2 − v2) = 8
=⇒ 3(u1 + v1)− (u2 + v2) = 8
=⇒ (u1 + v1, u2 + v2) 6∈ W (since RHS of previous eqn is 8, not 4)
=⇒ u + v 6∈ W

∴ Vector Addition is not closed in W.

Therefore, W is not a subspace of R2.
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Showing that a Set is not a Subspace (Example)

WEX 4-3-2: Show that W = {(x, y) ∈ R2 : 3x− y = 4} is not a subspace of R2.

There are three ways to show this, but writing only one of them is sufficient:

(Third way)

Observe that, clearly, W ⊆ R2 (since every element of W is an element of R2)

Let v = (v1, v2) ∈ W, α ∈ R
Then, 3v1 − v2 = 4
=⇒ α(3v1 − v2) = α(4) (multiply equation by scalar α)
=⇒ 3αv1 − αv2 = 4α
=⇒ 3(αv1)− (αv2) = 4α
=⇒ (αv1, αv2) 6∈ W (since RHS of previous eqn is not 4 if α 6= 1)
=⇒ αv 6∈ W

∴ Scalar Multiplication is not closed in W.

Therefore, W is not a subspace of R2.
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Linearity of Differentiation & Integration (Review)

Theorem
(Linearity of 1st-order Derivatives)

Let f , g ∈ C1[a, b] and α ∈ R. Then:

[f + g]
′
(x) ≡ d

dx

[
f (x) + g(x)

]
=

d
dx

[
f (x)

]
+

d
dx

[
g(x)

]
≡ f ′(x) + g′(x)

[αf ]
′
(x) ≡ d

dx

[
αf (x)

]
= α

d
dx

[
f (x)

]
≡ αf ′(x)

PROOF:

[f + g]
′
(x) := lim

∆x→0

[f (x + ∆x) + g(x + ∆x)]− [f (x) + g(x)]

∆x

= lim
∆x→0

f (x + ∆x)− f (x)

∆x
+ lim

∆x→0

g(x + ∆x)− g(x)

∆x

:= f ′(x) + g′(x)
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Linearity of Differentiation & Integration (Review)

Theorem
(Linearity of 1st-order Derivatives)

Let f , g ∈ C1[a, b] and α ∈ R. Then:

[f + g]
′
(x) ≡ d

dx

[
f (x) + g(x)

]
=

d
dx

[
f (x)

]
+

d
dx

[
g(x)

]
≡ f ′(x) + g′(x)

[αf ]
′
(x) ≡ d

dx

[
αf (x)

]
= α

d
dx

[
f (x)

]
≡ αf ′(x)

PROOF:

[αf ]
′
(x) := lim

∆x→0

[αf (x + ∆x)]− [αf (x)]

∆x

= α lim
∆x→0

f (x + ∆x)− f (x)

∆x

:= αf ′(x) QED
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Linearity of Differentiation & Integration (Review)

Corollary
(Linearity of higher-order Derivatives)

Let f , g ∈ Ck[a, b] where k > 1 is an integer and α ∈ R. Then:

[f + g]
(k)

(x) ≡ dk

dxk

[
f (x) + g(x)

]
=

dk

dxk

[
f (x)

]
+

dk

dxk

[
g(x)

]
≡ f (k)(x) + g(k)(x)

[αf ]
(k)

(x) ≡ dk

dxk

[
αf (x)

]
= α

dk

dxk

[
f (x)

]
≡ αf (k)(x)

PROOF: Apply the previous theorem k times. QED
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Linearity of Differentiation & Integration (Review)

Theorem
(Linearity of Definite Integrals)

Let f , g ∈ C[a, b] and α ∈ R. Then:∫ b

a

[
f (x) + g(x)

]
dx =

∫ b

a
f (x) dx +

∫ b

a
g(x) dx

∫ b

a

[
αf (x)

]
dx = α

∫ b

a
f (x) dx

PROOF:
∫ b

a

[
f (x) + g(x)

]
dx := lim

N→∞

N∑
k=1

[
f (x∗k ) + g(x∗k )

]
∆k

= lim
N→∞

N∑
k=1

f (x∗k )∆k + lim
N→∞

N∑
k=1

g(x∗k )∆k

:=

∫ b

a
f (x) dx +

∫ b

a
g(x) dx
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Linearity of Differentiation & Integration (Review)

Theorem
(Linearity of Definite Integrals)

Let f , g ∈ C[a, b] and α ∈ R. Then:∫ b

a

[
f (x) + g(x)

]
dx =

∫ b

a
f (x) dx +

∫ b

a
g(x) dx

∫ b

a

[
αf (x)

]
dx = α

∫ b

a
f (x) dx

PROOF:
∫ b

a

[
αf (x)

]
dx := lim

N→∞

N∑
k=1

αf (x∗k )∆k

= α lim
N→∞

N∑
k=1

f (x∗k )∆k

:= α

∫ b

a
f (x) dx QED
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Showing that a Set is not a Subspace (Example)

WEX 4-3-3: Show: W = {p(t) ∈ P2 : p′′′(2) = 5} is not a subspace of P2.
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Showing that a Set is not a Subspace (Example)

WEX 4-3-3: Show: W = {p(t) ∈ P2 : p′′′(2) = 5} is not a subspace of P2.

There are three ways to show this, but writing only one of them is sufficient:

(First way)

Observe that, clearly, W ⊆ P2 (since every element of W is an element of P2)

Observe that the zero vector z(t) = 0t2 + 0t + 0 6∈ W since z′′′(2) = 0 6= 5

∴ The Zero Vector is not contained in W.

∴ W is not a subspace of P2.
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Showing that a Set is not a Subspace (Example)

WEX 4-3-3: Show: W = {p(t) ∈ P2 : p′′′(2) = 5} is not a subspace of P2.

There are three ways to show this, but writing only one of them is sufficient:

(Second way)

Observe that, clearly, W ⊆ P2 (since every element of W is an element of P2)

Let p(t) ∈ W, q(t) ∈ W. Then, p′′′(2) = 5 and q′′′(2) = 5

=⇒ [p + q]′′′(2) = p′′′(2) + q′′′(2) = 5 + 5 = 10

=⇒ p(t) + q(t) 6∈ W (since [p + q]′′′(2) 6= 5)

∴ Vector Addition is not closed in W.

∴ W is not a subspace of P2.
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Showing that a Set is not a Subspace (Example)

WEX 4-3-3: Show: W = {p(t) ∈ P2 : p′′′(2) = 5} is not a subspace of P2.

There are three ways to show this, but writing only one of them is sufficient:

(Third way)

Observe that, clearly, W ⊆ P2 (since every element of W is an element of P2)

Let p(t) ∈ W and α 6= 1. Then, p′′′(2) = 5

=⇒ [αp]′′′(2) ≡ d3

dt3

[
αp(t)

]∣∣∣
t=2

= α
d3

dt3

[
p(t)
]∣∣∣

t=2
≡ α[p′′′(2)] = 5α 6= 5

=⇒ αp(t) 6∈ W (since [αp]′′′(2) 6= 5 for α 6= 1)

∴ Scalar Multiplication is not closed in W.

∴ W is not a subspace of P2.
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Fin

Fin.
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