Spanning Sets \& Linear Independence

 Linear AlgebraJosh Engwer

TTU

05 October 2015

PART I:

LINEAR COMBINATIONS OF VECTORS

Linear Combinations of Vectors (Definition)

For the remainder of Linear Algebra \& higher math courses, the notion of a linear combination of vectors is crucial to the development of key ideas.

Definition

(Linear Combination of Vectors)
Let V be a vector space.
Then a vector $\overrightarrow{\mathbf{u}} \in V$ is represented as a linear combination of the vectors $\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}, \ldots, \overrightarrow{\mathbf{v}}_{k} \in V$ if $\overrightarrow{\mathbf{u}}$ can be written in the form

$$
\overrightarrow{\mathbf{u}}=c_{1} \overrightarrow{\mathbf{v}}_{1}+c_{2} \overrightarrow{\mathbf{v}}_{2}+\cdots+c_{k} \overrightarrow{\mathbf{v}}_{k}
$$

where scalars $c_{1}, c_{2}, \ldots, c_{k} \in \mathbb{R}$

Examples of Linear Combinations

- Let $S=\{(1,1),(2,-1),(0,4),(1,12)\} \equiv\left\{\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}, \overrightarrow{\mathbf{v}}_{3}, \overrightarrow{\mathbf{v}}_{4}\right\} \subseteq \mathbb{R}^{2}$.

Then $\overrightarrow{\mathbf{v}}_{\mathbf{4}}$ is a linear combination of $\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}, \overrightarrow{\mathbf{v}}_{3}$ because

$$
\overrightarrow{\mathbf{v}}_{4}=3 \overrightarrow{\mathbf{v}}_{1}-\overrightarrow{\mathbf{v}}_{2}+2 \overrightarrow{\mathbf{v}}_{3}=3(1,1)-(2,-1)+2(0,4)=(1,12)
$$

- Let $S=\left\{\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{c}-1 \\ 3 \\ 5\end{array}\right],\left[\begin{array}{c}0 \\ 5 \\ 10\end{array}\right]\right\} \equiv\left\{\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}, \overrightarrow{\mathbf{v}}_{3}\right\} \subseteq \mathbb{R}^{3}$.

Then $\overrightarrow{\mathbf{v}}_{3}$ is a linear combination of $\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}$ because

$$
\overrightarrow{\mathbf{v}}_{3}=5 \overrightarrow{\mathbf{v}}_{1}+(0) \overrightarrow{\mathbf{v}}_{2}=5\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]+(0)\left[\begin{array}{c}
-1 \\
3 \\
5
\end{array}\right]=\left[\begin{array}{c}
0 \\
5 \\
10
\end{array}\right]
$$

- Let $S=\left\{(1,1,1,1)^{T},(8,8,8,8)^{T}\right\} \equiv\left\{\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}\right\} \subseteq \mathbb{R}^{4}$.

Then $\overrightarrow{\mathbf{v}}_{2}$ is a linear combination of $\overrightarrow{\mathbf{v}}_{1}$ because

$$
\overrightarrow{\mathbf{v}}_{2}=8 \overrightarrow{\mathbf{v}}_{1}=8(1,1,1,1)^{T}=(8,8,8,8)^{T}
$$

Then $\overrightarrow{\mathbf{v}}_{1}$ is a linear combination of $\overrightarrow{\mathbf{v}}_{2}$ because

$$
\overrightarrow{\mathbf{v}}_{1}=\frac{1}{8} \overrightarrow{\mathbf{v}}_{2}=\frac{1}{8}(8,8,8,8)^{T}=(1,1,1,1)^{T}
$$

Examples of Linear Combinations

- $S=\left\{\left[\begin{array}{lll}3 & 4 & 8 \\ 2 & 5 & 5\end{array}\right],\left[\begin{array}{lll}1 & 2 & 2 \\ 0 & 3 & 1\end{array}\right],\left[\begin{array}{lll}1 & 1 & 3 \\ 1 & 1 & 2\end{array}\right]\right\} \equiv\left\{A_{1}, A_{2}, A_{3}\right\} \subseteq \mathbb{R}^{2 \times 3}$.

Then A_{1} is a linear combination of A_{2}, A_{3} because

$$
A_{1}=(1) A_{2}+2 A_{3}=(1)\left[\begin{array}{lll}
1 & 2 & 2 \\
0 & 3 & 1
\end{array}\right]+(2)\left[\begin{array}{lll}
1 & 1 & 3 \\
1 & 1 & 2
\end{array}\right]=\left[\begin{array}{lll}
3 & 4 & 8 \\
2 & 5 & 5
\end{array}\right]
$$

- $S=\left\{2-t^{3}, t^{2}-t+5,4 t^{2}, 6, t-t^{2}-3 t^{3}\right\} \equiv\left\{p_{1}(t), p_{2}(t), p_{3}(t), p_{4}(t), p_{5}(t)\right\} \subseteq P_{3}$ Then $p_{5}(t)$ is a linear combination of $p_{1}(t), p_{2}(t), p_{3}(t), p_{4}(t)$ because

$$
\begin{aligned}
p_{5}(t) & =3 p_{1}(t)+(-1) p_{2}(t)+(0) p_{3}(t)-\frac{1}{6} p_{4}(t) \\
& =3\left(2-t^{3}\right)+(-1)\left(t^{2}-t+5\right)+(0)\left(4 t^{2}\right)-\frac{1}{6}(6) \\
& =6-3 t^{3}-t^{2}+t-5+0-1 \\
& =t-t^{2}-3 t^{3}
\end{aligned}
$$

- Let $S=\left\{\left[\begin{array}{c}1 \\ -3\end{array}\right],\left[\begin{array}{l}-7 \\ -5\end{array}\right],\left[\begin{array}{l}0 \\ 0\end{array}\right]\right\} \equiv\left\{\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}, \overrightarrow{\mathbf{v}}_{3}\right\} \subseteq \mathbb{R}^{2}$

Then $\overrightarrow{\mathbf{v}}_{3}$ is a linear combination of $\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}$ because

$$
\overrightarrow{\mathbf{v}}_{3}=(0) \overrightarrow{\mathbf{v}}_{1}+(0) \overrightarrow{\mathbf{v}}_{2}=(0)\left[\begin{array}{c}
1 \\
-3
\end{array}\right]+(0)\left[\begin{array}{l}
-7 \\
-5
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Examples that are not Linear Combinations

- Let $S=\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 3\end{array}\right]\right\} \equiv\left\{\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}\right\} \subseteq \mathbb{R}^{2}$

Then $\overrightarrow{\mathbf{v}}_{1}$ is not a linear combination of $\overrightarrow{\mathbf{v}}_{2}$ (and vice-versa). Why not??

- Let $S=\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0\end{array}\right]\right\} \equiv\left\{\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}, \overrightarrow{\mathbf{v}}_{3}\right\} \subseteq \mathbb{R}^{2}$.

Then $\overrightarrow{\mathbf{v}}_{1}$ is not a linear combination of $\overrightarrow{\mathbf{v}}_{2}, \overrightarrow{\mathbf{v}}_{3}$. Why not??

- Let $S=\left\{\left[\begin{array}{cc}3 & -3 \\ 4 & 0\end{array}\right],\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\right\} \equiv\left\{A_{1}, A_{2}, A_{3}\right\} \subseteq \mathbb{R}^{2 \times 2}$.

Then A_{3} is not a linear combination of A_{1}, A_{2}. Why not??

- Let $S=\left\{1-t^{2}, t^{2},-3, t^{2}+7 t+1\right\} \equiv\left\{p_{1}(t), p_{2}(t), p_{3}(t), p_{4}(t)\right\} \subseteq P_{2}$

Then $p_{4}(t)$ is not a linear combination of $p_{1}(t), p_{2}(t), p_{3}(t)$. Why not??

Finding a Linear Combination (Procedure)

Proposition

(Writing a Vector as a Linear Combination of other Vectors)
TASK: Write $\overrightarrow{\mathbf{u}} \in V$ as a linear combination of $\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}, \ldots, \overrightarrow{\mathbf{v}}_{k} \in V$.
(1) Let $c_{1}, c_{2}, \ldots, c_{k} \in \mathbb{R}$ be unknown scalars such that

$$
c_{1} \overrightarrow{\mathbf{v}}_{1}+c_{2} \overrightarrow{\mathbf{v}}_{2}+\cdots+c_{k} \overrightarrow{\mathbf{v}}_{k}=\overrightarrow{\mathbf{u}}
$$

(2) Compute \& simplify/factor LHS expression: $c_{1} \overrightarrow{\mathbf{v}}_{1}+c_{2} \overrightarrow{\mathbf{v}}_{2}+\cdots+c_{k} \overrightarrow{\mathbf{v}}_{k}$
(3) Equate both sides of equation, component by component.
(4) Solve the resulting linear system for $c_{1}, c_{2}, \ldots, c_{k}$ using Gauss-Jordan on the resulting augmented matrix $[A \mid \overrightarrow{\mathbf{u}}]$ (A is coefficient matrix of LHS)
(\star) If there are infinitely many solutions,
let the parameters t, s, \ldots be any specific values (e.g. Let $t=1, s=0, \ldots$)
(\star) If there are no solutions (i.e. linear system is inconsistent), it's not possible to write $\overrightarrow{\mathbf{u}}$ as a linear combination of $\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}, \ldots, \overrightarrow{\mathbf{v}}_{k}$

Finding a Linear Combination (Example)

WEX 4-4-1: Write $\left[\begin{array}{l}1 \\ 1 \\ 4\end{array}\right]$ as a linear combination of $\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right],\left[\begin{array}{l}3 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}3 \\ 3 \\ 2\end{array}\right]$

Finding a Linear Combination (Example)

WEX 4-4-1: Write $\left[\begin{array}{l}1 \\ 1 \\ 4\end{array}\right]$ as a linear combination of $\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right],\left[\begin{array}{l}3 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}3 \\ 3 \\ 2\end{array}\right]$
$c_{1}\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right]+c_{2}\left[\begin{array}{l}3 \\ 2 \\ 3\end{array}\right]+c_{3}\left[\begin{array}{l}3 \\ 3 \\ 2\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 4\end{array}\right]$

Finding a Linear Combination (Example)

WEX 4-4-1: Write $\left[\begin{array}{l}1 \\ 1 \\ 4\end{array}\right]$ as a linear combination of $\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right],\left[\begin{array}{l}3 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}3 \\ 3 \\ 2\end{array}\right]$

$$
\begin{aligned}
& c_{1}\left[\begin{array}{l}
2 \\
3 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{l}
3 \\
2 \\
3
\end{array}\right]+c_{3}\left[\begin{array}{l}
3 \\
3 \\
2
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
4
\end{array}\right] \\
& \Longrightarrow\left[\begin{array}{c}
2 c_{1}+3 c_{2}+3 c_{3} \\
3 c_{1}+2 c_{2}+3 c_{3} \\
c_{1}+3 c_{2}+2 c_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
4
\end{array}\right]
\end{aligned}
$$

Finding a Linear Combination (Example)

WEX 4-4-1: Write $\left[\begin{array}{l}1 \\ 1 \\ 4\end{array}\right]$ as a linear combination of $\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right],\left[\begin{array}{l}3 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}3 \\ 3 \\ 2\end{array}\right]$

$$
\begin{aligned}
& c_{1}\left[\begin{array}{l}
2 \\
3 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{l}
3 \\
2 \\
3
\end{array}\right]+c_{3}\left[\begin{array}{l}
3 \\
3 \\
2
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
4
\end{array}\right] \\
& \Longrightarrow\left[\begin{array}{c}
2 c_{1}+3 c_{2}+3 c_{3} \\
3 c_{1}+2 c_{2}+3 c_{3} \\
c_{1}+3 c_{2}+2 c_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
4
\end{array}\right] \\
& \Longrightarrow\left\{\begin{array}{r}
2 c_{1}+3 c_{2}+3 c_{3}=1 \\
3 c_{1}+2 c_{2}+3 c_{3}=1 \\
c_{1}+3 c_{2}+2 c_{3}=4
\end{array}\right.
\end{aligned}
$$

Finding a Linear Combination (Example)

WEX 4-4-1: Write $\left[\begin{array}{l}1 \\ 1 \\ 4\end{array}\right]$ as a linear combination of $\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right],\left[\begin{array}{l}3 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}3 \\ 3 \\ 2\end{array}\right]$
$c_{1}\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right]+c_{2}\left[\begin{array}{l}3 \\ 2 \\ 3\end{array}\right]+c_{3}\left[\begin{array}{l}3 \\ 3 \\ 2\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 4\end{array}\right]$
$\Longrightarrow\left[\begin{array}{c}2 c_{1}+3 c_{2}+3 c_{3} \\ 3 c_{1}+2 c_{2}+3 c_{3} \\ c_{1}+3 c_{2}+2 c_{3}\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 4\end{array}\right]$
$\Longrightarrow\left\{\begin{array}{r}2 c_{1}+3 c_{2}+3 c_{3}=1 \\ 3 c_{1}+2 c_{2}+3 c_{3}=1 \\ c_{1}+3 c_{2}+2 c_{3}=4\end{array}\right.$
$\Longrightarrow\left[\begin{array}{lll}2 & 3 & 3 \\ 3 & 2 & 3 \\ 1 & 3 & 2\end{array}\right]\left[\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 4\end{array}\right]$

Finding a Linear Combination (Example)

WEX 4-4-1: Write $\left[\begin{array}{l}1 \\ 1 \\ 4\end{array}\right]$ as a linear combination of $\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right],\left[\begin{array}{l}3 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}3 \\ 3 \\ 2\end{array}\right]$
$\Longrightarrow\left[\begin{array}{lll}2 & 3 & 3 \\ 3 & 2 & 3 \\ 1 & 3 & 2\end{array}\right]\left[\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 4\end{array}\right]$

Finding a Linear Combination (Example)

WEX 4-4-1: Write $\left[\begin{array}{l}1 \\ 1 \\ 4\end{array}\right]$ as a linear combination of $\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right],\left[\begin{array}{l}3 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}3 \\ 3 \\ 2\end{array}\right]$
$\Longrightarrow\left[\begin{array}{lll}2 & 3 & 3 \\ 3 & 2 & 3 \\ 1 & 3 & 2\end{array}\right]\left[\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 4\end{array}\right]$
$\Longrightarrow\left[\begin{array}{lll|l}2 & 3 & 3 & 1 \\ 3 & 2 & 3 & 1 \\ 1 & 3 & 2 & 4\end{array}\right]$

Finding a Linear Combination (Example)

WEX 4-4-1: Write $\left[\begin{array}{l}1 \\ 1 \\ 4\end{array}\right]$ as a linear combination of $\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right],\left[\begin{array}{l}3 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}3 \\ 3 \\ 2\end{array}\right]$

$$
\begin{aligned}
& \Longrightarrow\left[\begin{array}{lll}
2 & 3 & 3 \\
3 & 2 & 3 \\
1 & 3 & 2
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
4
\end{array}\right] \\
& \Longrightarrow\left[\begin{array}{lll|l}
2 & 3 & 3 & 1 \\
3 & 2 & 3 & 1 \\
1 & 3 & 2 & 4
\end{array}\right] \sim\left[\begin{array}{|ccc|c}
1 & 0 & 0 & 5 \\
0 & 1 & 0 & 5 \\
0 & 0 & 1 & -8
\end{array}\right]
\end{aligned}
$$

Finding a Linear Combination (Example)

WEX 4-4-1: Write $\left[\begin{array}{l}1 \\ 1 \\ 4\end{array}\right]$ as a linear combination of $\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right],\left[\begin{array}{l}3 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}3 \\ 3 \\ 2\end{array}\right]$
$\Longrightarrow\left[\begin{array}{lll}2 & 3 & 3 \\ 3 & 2 & 3 \\ 1 & 3 & 2\end{array}\right]\left[\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 4\end{array}\right]$
$\Longrightarrow\left[\begin{array}{lll|l}2 & 3 & 3 & 1 \\ 3 & 2 & 3 & 1 \\ 1 & 3 & 2 & 4\end{array}\right] \sim\left[\begin{array}{ccc|r}\boxed{1} & 0 & 0 & 5 \\ 0 & 1 & 0 & 5 \\ 0 & 0 & \boxed{1} & -8\end{array}\right]$
$\Longrightarrow c_{1}=5, c_{2}=5, c_{3}=-8$

Finding a Linear Combination (Example)

WEX 4-4-1: Write $\left[\begin{array}{l}1 \\ 1 \\ 4\end{array}\right]$ as a linear combination of $\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right],\left[\begin{array}{l}3 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}3 \\ 3 \\ 2\end{array}\right]$

$$
\begin{aligned}
& \Longrightarrow\left[\begin{array}{lll}
2 & 3 & 3 \\
3 & 2 & 3 \\
1 & 3 & 2
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
4
\end{array}\right] \\
& \Longrightarrow\left[\begin{array}{lll|l}
2 & 3 & 3 & 1 \\
3 & 2 & 3 & 1 \\
1 & 3 & 2 & 4
\end{array}\right] \sim\left[\begin{array}{|ccc|r}
1 & 0 & 0 & 5 \\
0 & 1 & 0 & 5 \\
0 & 0 & 1 & -8
\end{array}\right]
\end{aligned}
$$

$$
\Longrightarrow c_{1}=5, c_{2}=5, c_{3}=-8
$$

$$
\therefore\left[\begin{array}{l}
1 \\
1 \\
4
\end{array}\right]=5\left[\begin{array}{l}
2 \\
3 \\
1
\end{array}\right]+5\left[\begin{array}{l}
3 \\
2 \\
3
\end{array}\right]+(-8)\left[\begin{array}{l}
3 \\
3 \\
2
\end{array}\right]
$$

$$
\overrightarrow{\mathbf{u}}=5 \overrightarrow{\mathbf{v}}_{1}+5 \overrightarrow{\mathbf{v}}_{2}+(-8) \overrightarrow{\mathbf{v}}_{3}
$$

Finding a Linear Combination (Example)

WEX 4-4-2:

Write $-3 t^{2}-3 t-3$ as a linear combination of $\left\{\begin{array}{rr}3 t-3, & -3 t+3, \\ t^{2}-4 t+1, & -4 t-1\end{array}\right\}$

Finding a Linear Combination (Example)

WEX 4-4-2:

Write $-3 t^{2}-3 t-3$ as a linear combination of $\left\{\begin{array}{rr}3 t-3, & -3 t+3, \\ t^{2}-4 t+1, & -4 t-1\end{array}\right\}$
$c_{1}(3 t-3)+c_{2}(-3 t+3)+c_{3}\left(t^{2}-4 t+1\right)+c_{4}(-4 t-1)=-3 t^{2}-3 t-3$

Finding a Linear Combination (Example)

WEX 4-4-2:

Write $-3 t^{2}-3 t-3$ as a linear combination of $\left\{\begin{array}{rr}3 t-3, & -3 t+3, \\ t^{2}-4 t+1, & -4 t-1\end{array}\right\}$

$$
\begin{aligned}
& c_{1}(3 t-3)+c_{2}(-3 t+3)+c_{3}\left(t^{2}-4 t+1\right)+c_{4}(-4 t-1)=-3 t^{2}-3 t-3 \\
& \Longrightarrow 3 c_{1} t-3 c_{1}-3 c_{2} t+3 c_{2}+c_{3} t^{2}-4 c_{3} t+c_{3}-4 c_{4} t-c_{4}=-3 t^{2}-3 t-3
\end{aligned}
$$

Finding a Linear Combination (Example)

WEX 4-4-2:

Write $-3 t^{2}-3 t-3$ as a linear combination of $\left\{\begin{array}{rr}3 t-3, & -3 t+3, \\ t^{2}-4 t+1, & -4 t-1\end{array}\right\}$

$$
\begin{aligned}
& c_{1}(3 t-3)+c_{2}(-3 t+3)+c_{3}\left(t^{2}-4 t+1\right)+c_{4}(-4 t-1)=-3 t^{2}-3 t-3 \\
& \Longrightarrow 3 c_{1} t-3 c_{1}-3 c_{2} t+3 c_{2}+c_{3} t^{2}-4 c_{3} t+c_{3}-4 c_{4} t-c_{4}=-3 t^{2}-3 t-3 \\
& \Longrightarrow c_{3} t^{2}+\left(3 c_{1}-3 c_{2}-4 c_{3}-4 c_{4}\right) t+\left(-3 c_{1}+3 c_{2}+c_{3}-c_{4}\right)=-3 t^{2}-3 t-3
\end{aligned}
$$

Finding a Linear Combination (Example)

WEX 4-4-2:

Write $-3 t^{2}-3 t-3$ as a linear combination of $\left\{\begin{array}{rr}3 t-3, & -3 t+3, \\ t^{2}-4 t+1, & -4 t-1\end{array}\right\}$

$$
\begin{aligned}
& c_{1}(3 t-3)+c_{2}(-3 t+3)+c_{3}\left(t^{2}-4 t+1\right)+c_{4}(-4 t-1)=-3 t^{2}-3 t-3 \\
& \Longrightarrow 3 c_{1} t-3 c_{1}-3 c_{2} t+3 c_{2}+c_{3} t^{2}-4 c_{3} t+c_{3}-4 c_{4} t-c_{4}=-3 t^{2}-3 t-3 \\
& \Longrightarrow c_{3} t^{2}+\left(3 c_{1}-3 c_{2}-4 c_{3}-4 c_{4}\right) t+\left(-3 c_{1}+3 c_{2}+c_{3}-c_{4}\right)=-3 t^{2}-3 t-3
\end{aligned}
$$

$$
\Longrightarrow\left\{\begin{aligned}
c_{3} & & =-3 \\
3 c_{1} & -3 c_{2}-4 c_{3}-4 c_{4} & =-3 \\
-3 c_{1} & +3 c_{2}+3 c_{3}-c_{4} & =-3
\end{aligned}\right\}
$$

Finding a Linear Combination (Example)

WEX 4-4-2:

Write $-3 t^{2}-3 t-3$ as a linear combination of $\left\{\begin{array}{rr}3 t-3, & -3 t+3, \\ t^{2}-4 t+1, & -4 t-1\end{array}\right\}$

$$
\begin{aligned}
& c_{1}(3 t-3)+c_{2}(-3 t+3)+c_{3}\left(t^{2}-4 t+1\right)+c_{4}(-4 t-1)=-3 t^{2}-3 t-3 \\
& \Longrightarrow 3 c_{1} t-3 c_{1}-3 c_{2} t+3 c_{2}+c_{3} t^{2}-4 c_{3} t+c_{3}-4 c_{4} t-c_{4}=-3 t^{2}-3 t-3 \\
& \Longrightarrow c_{3} t^{2}+\left(3 c_{1}-3 c_{2}-4 c_{3}-4 c_{4}\right) t+\left(-3 c_{1}+3 c_{2}+c_{3}-c_{4}\right)=-3 t^{2}-3 t-3 \\
& \Longrightarrow\left\{\begin{aligned}
3 c_{1}-3 c_{2}-4 c_{3}-4 c_{4} & =-3 \\
-3 c_{1}+3 c_{2}+c_{3}-c_{4} & =-3
\end{aligned}\right\} \\
& \Longrightarrow\left[\begin{array}{rrrr}
0 & 0 & 1 & 0 \\
3 & -3 & -4 & -4 \\
-3 & 3 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right]=\left[\begin{array}{l}
-3 \\
-3 \\
-3
\end{array}\right]
\end{aligned}
$$

Finding a Linear Combination (Example)

WEX 4-4-2:

Write $-3 t^{2}-3 t-3$ as a linear combination of $\left\{\begin{array}{rr}3 t-3, & -3 t+3, \\ t^{2}-4 t+1, & -4 t-1\end{array}\right\}$
$\Longrightarrow\left[\begin{array}{rrrr}0 & 0 & 1 & 0 \\ 3 & -3 & -4 & -4 \\ -3 & 3 & 1 & -1\end{array}\right]\left[\begin{array}{l}c_{1} \\ c_{2} \\ c_{3} \\ c_{4}\end{array}\right]=\left[\begin{array}{l}-3 \\ -3 \\ -3\end{array}\right]$

Finding a Linear Combination (Example)

WEX 4-4-2:

Write $-3 t^{2}-3 t-3$ as a linear combination of $\left\{\begin{array}{rr}3 t-3, & -3 t+3, \\ t^{2}-4 t+1, & -4 t-1\end{array}\right\}$
$\Longrightarrow\left[\begin{array}{rrrr}0 & 0 & 1 & 0 \\ 3 & -3 & -4 & -4 \\ -3 & 3 & 1 & -1\end{array}\right]\left[\begin{array}{l}c_{1} \\ c_{2} \\ c_{3} \\ c_{4}\end{array}\right]=\left[\begin{array}{l}-3 \\ -3 \\ -3\end{array}\right]$
$\Longrightarrow\left[\begin{array}{rrrr|r}0 & 0 & 1 & 0 & -3 \\ 3 & -3 & -4 & -4 & -3 \\ -3 & 3 & 1 & -1 & -3\end{array}\right]$

Finding a Linear Combination (Example)

WEX 4-4-2:

Write $-3 t^{2}-3 t-3$ as a linear combination of $\left\{\begin{array}{rr}3 t-3, & -3 t+3, \\ t^{2}-4 t+1, & -4 t-1\end{array}\right\}$ $\Longrightarrow\left[\begin{array}{rrrr}0 & 0 & 1 & 0 \\ 3 & -3 & -4 & -4 \\ -3 & 3 & 1 & -1\end{array}\right]\left[\begin{array}{l}c_{1} \\ c_{2} \\ c_{3} \\ c_{4}\end{array}\right]=\left[\begin{array}{l}-3 \\ -3 \\ -3\end{array}\right]$
$\Longrightarrow\left[\begin{array}{rrrr|r}0 & 0 & 1 & 0 & -3 \\ 3 & -3 & -4 & -4 & -3 \\ -3 & 3 & 1 & -1 & -3\end{array}\right] \sim\left[\begin{array}{rrrr|r}\hline 1 & -1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & -3 \\ 0 & 0 & 0 & 1 & 3\end{array}\right]$

Finding a Linear Combination (Example)

WEX 4-4-2:

Write $-3 t^{2}-3 t-3$ as a linear combination of $\left\{\begin{array}{rr}3 t-3, & -3 t+3, \\ t^{2}-4 t+1, & -4 t-1\end{array}\right\}$
$\Longrightarrow\left[\begin{array}{rrrr}0 & 0 & 1 & 0 \\ 3 & -3 & -4 & -4 \\ -3 & 3 & 1 & -1\end{array}\right]\left[\begin{array}{l}c_{1} \\ c_{2} \\ c_{3} \\ c_{4}\end{array}\right]=\left[\begin{array}{l}-3 \\ -3 \\ -3\end{array}\right]$
$\Longrightarrow\left[\begin{array}{rrrr|r}0 & 0 & 1 & 0 & -3 \\ 3 & -3 & -4 & -4 & -3 \\ -3 & 3 & 1 & -1 & -3\end{array}\right] \sim\left[\begin{array}{rrrr|r}\hline 1 & -1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & -3 \\ 0 & 0 & 0 & 1 & 3\end{array}\right]$
\Longrightarrow Let $c_{2}=\tilde{t}$. Then, $c_{4}=3, c_{3}=-3, c_{1}-c_{2}=-1$

Finding a Linear Combination (Example)

WEX 4-4-2:

Write $-3 t^{2}-3 t-3$ as a linear combination of $\left\{\begin{array}{rr}3 t-3, & -3 t+3, \\ t^{2}-4 t+1, & -4 t-1\end{array}\right\}$
$\Longrightarrow\left[\begin{array}{rrrr}0 & 0 & 1 & 0 \\ 3 & -3 & -4 & -4 \\ -3 & 3 & 1 & -1\end{array}\right]\left[\begin{array}{l}c_{1} \\ c_{2} \\ c_{3} \\ c_{4}\end{array}\right]=\left[\begin{array}{l}-3 \\ -3 \\ -3\end{array}\right]$
$\Longrightarrow\left[\begin{array}{rrrr|r}0 & 0 & 1 & 0 & -3 \\ 3 & -3 & -4 & -4 & -3 \\ -3 & 3 & 1 & -1 & -3\end{array}\right] \sim\left[\begin{array}{rrrr|r}\hline 1 & -1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & -3 \\ 0 & 0 & 0 & 1 & 3\end{array}\right]$
\Longrightarrow Let $c_{2}=\tilde{t}$. Then, $c_{4}=3, c_{3}=-3, c_{1}-c_{2}=-1$
$\Longrightarrow\left(c_{1}, c_{2}, c_{3}, c_{4}\right)^{T}=(\tilde{t}-1, \widetilde{t},-3,3)^{T}$

Finding a Linear Combination (Example)

WEX 4-4-2:

Write $-3 t^{2}-3 t-3$ as a linear combination of $\left\{\begin{array}{rr}3 t-3, & -3 t+3, \\ t^{2}-4 t+1, & -4 t-1\end{array}\right\}$
$\Longrightarrow\left[\begin{array}{rrrr|r}0 & 0 & 1 & 0 & -3 \\ 3 & -3 & -4 & -4 & -3 \\ -3 & 3 & 1 & -1 & -3\end{array}\right] \sim\left[\begin{array}{rrrr|r}\hline 1 & -1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & -3 \\ 0 & 0 & 0 & 1 & 3\end{array}\right]$
\Longrightarrow Let $c_{2}=\tilde{t}$. Then, $c_{4}=3, c_{3}=-3, c_{1}-c_{2}=-1$
$\Longrightarrow\left(c_{1}, c_{2}, c_{3}, c_{4}\right)^{T}=(\tilde{t}-1, \tilde{t},-3,3)^{T}$
Since there's a parameter (\tilde{t}), the linear system has infinitely many solutions. But for the purposes of this problem, only one solution is needed:

Finding a Linear Combination (Example)

WEX 4-4-2:

Write $-3 t^{2}-3 t-3$ as a linear combination of $\left\{\begin{array}{rr}3 t-3, & -3 t+3, \\ t^{2}-4 t+1, & -4 t-1\end{array}\right\}$
$\Longrightarrow\left[\begin{array}{rrrr|r}0 & 0 & 1 & 0 & -3 \\ 3 & -3 & -4 & -4 & -3 \\ -3 & 3 & 1 & -1 & -3\end{array}\right] \sim\left[\begin{array}{rrrr|r}\hline 1 & -1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & -3 \\ 0 & 0 & 0 & 1 & 3\end{array}\right]$
\Longrightarrow Let $c_{2}=\tilde{t}$. Then, $c_{4}=3, c_{3}=-3, c_{1}-c_{2}=-1$
$\Longrightarrow\left(c_{1}, c_{2}, c_{3}, c_{4}\right)^{T}=(\tilde{t}-1, \tilde{t},-3,3)^{T}$
Since there's a parameter (\widetilde{t}), the linear system has infinitely many solutions. But for the purposes of this problem, only one solution is needed:
Let $\tilde{t}=1$. Then $\left(c_{1}, c_{2}, c_{3}, c_{4}\right)^{T}=(0,1,-3,3)^{T}$
Therefore,

$$
\begin{aligned}
& -3 t^{2}-3 t-3=(0)(3 t-3)+(1)(-3 t+3)+(-3)\left(t^{2}-4 t+1\right)+(3)(-4 t-1) \\
& r(t)=(0) p_{1}(t)+1 p_{2}(t)+(-3) p_{3}(t)+3 p_{4}(t)
\end{aligned}
$$

Finding a Linear Combination (Example)

WEX 4-4-2:

Write $-3 t^{2}-3 t-3$ as a linear combination of $\left\{\begin{array}{rr}3 t-3, & -3 t+3, \\ t^{2}-4 t+1, & -4 t-1\end{array}\right\}$
$\Longrightarrow\left[\begin{array}{rrrr|r}0 & 0 & 1 & 0 & -3 \\ 3 & -3 & -4 & -4 & -3 \\ -3 & 3 & 1 & -1 & -3\end{array}\right] \sim\left[\begin{array}{rrrr|r}\hline 1 & -1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & -3 \\ 0 & 0 & 0 & 1 & 3\end{array}\right]$
\Longrightarrow Let $c_{2}=\tilde{t}$. Then, $c_{4}=3, c_{3}=-3, c_{1}-c_{2}=-1$
$\Longrightarrow\left(c_{1}, c_{2}, c_{3}, c_{4}\right)^{T}=(\tilde{t}-1, \tilde{t},-3,3)^{T}$
Since there's a parameter (\widetilde{t}), the linear system has infinitely many solutions. But for the purposes of this problem, only one solution is needed:
Let $\widetilde{t}=0$. Then $\left(c_{1}, c_{2}, c_{3}, c_{4}\right)^{T}=(-1,0,-3,3)^{T}$
Therefore,

$$
\begin{aligned}
& -3 t^{2}-3 t-3=(-1)(3 t-3)+(0)(-3 t+3)+(-3)\left(t^{2}-4 t+1\right)+(3)(-4 t-1) \\
& r(t)=(-1) p_{1}(t)+(0) p_{2}(t)+(-3) p_{3}(t)+3 p_{4}(t)
\end{aligned}
$$

Finding a Linear Combination (Example)

WEX 4-4-2:

Write $-3 t^{2}-3 t-3$ as a linear combination of $\left\{\begin{array}{rr}3 t-3, & -3 t+3, \\ t^{2}-4 t+1, & -4 t-1\end{array}\right\}$
$\Longrightarrow\left[\begin{array}{rrrr|r}0 & 0 & 1 & 0 & -3 \\ 3 & -3 & -4 & -4 & -3 \\ -3 & 3 & 1 & -1 & -3\end{array}\right] \sim\left[\begin{array}{rrrr|r}\hline 1 & -1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & -3 \\ 0 & 0 & 0 & 1 & 3\end{array}\right]$
\Longrightarrow Let $c_{2}=\tilde{t}$. Then, $c_{4}=3, c_{3}=-3, c_{1}-c_{2}=-1$
$\Longrightarrow\left(c_{1}, c_{2}, c_{3}, c_{4}\right)^{T}=(\tilde{t}-1, \tilde{t},-3,3)^{T}$
Since there's a parameter (\widetilde{t}), the linear system has infinitely many solutions. But for the purposes of this problem, only one solution is needed:
Let $\tilde{t}=2$. Then $\left(c_{1}, c_{2}, c_{3}, c_{4}\right)^{T}=(1,2,-3,3)^{T}$
Therefore,

$$
\begin{aligned}
& -3 t^{2}-3 t-3=(1)(3 t-3)+(2)(-3 t+3)+(-3)\left(t^{2}-4 t+1\right)+(3)(-4 t-1) \\
& r(t)=1 p_{1}(t)+2 p_{2}(t)+(-3) p_{3}(t)+3 p_{4}(t)
\end{aligned}
$$

Finding a Linear Combination (Example)

WEX 4-4-3:

Write $\left[\begin{array}{rr}-1 & -1 \\ 4 & -1\end{array}\right]$ as a linear combination of $\left[\begin{array}{rr}-1 & 3 \\ -3 & -3\end{array}\right],\left[\begin{array}{rr}3 & -4 \\ 2 & 2\end{array}\right]$

Finding a Linear Combination (Example)

WEX 4-4-3:
Write $\left[\begin{array}{rr}-1 & -1 \\ 4 & -1\end{array}\right]$ as a linear combination of $\left[\begin{array}{rr}-1 & 3 \\ -3 & -3\end{array}\right],\left[\begin{array}{rr}3 & -4 \\ 2 & 2\end{array}\right]$
$c_{1}\left[\begin{array}{rr}-1 & 3 \\ -3 & -3\end{array}\right]+c_{2}\left[\begin{array}{rr}3 & -4 \\ 2 & 2\end{array}\right]=\left[\begin{array}{rr}-1 & -1 \\ 4 & -1\end{array}\right]$

Finding a Linear Combination (Example)

WEX 4-4-3:

Write $\left[\begin{array}{rr}-1 & -1 \\ 4 & -1\end{array}\right]$ as a linear combination of $\left[\begin{array}{rr}-1 & 3 \\ -3 & -3\end{array}\right],\left[\begin{array}{rr}3 & -4 \\ 2 & 2\end{array}\right]$
$c_{1}\left[\begin{array}{rr}-1 & 3 \\ -3 & -3\end{array}\right]+c_{2}\left[\begin{array}{rr}3 & -4 \\ 2 & 2\end{array}\right]=\left[\begin{array}{rr}-1 & -1 \\ 4 & -1\end{array}\right]$
$\Longrightarrow\left[\begin{array}{rr}-c_{1} & 3 c_{1} \\ -3 c_{1} & -3 c_{1}\end{array}\right]+\left[\begin{array}{rr}3 c_{2} & -4 c_{2} \\ 2 c_{2} & 2 c_{2}\end{array}\right]=\left[\begin{array}{rr}-1 & -1 \\ 4 & -1\end{array}\right]$

Finding a Linear Combination (Example)

WEX 4-4-3:

Write $\left[\begin{array}{rr}-1 & -1 \\ 4 & -1\end{array}\right]$ as a linear combination of $\left[\begin{array}{rr}-1 & 3 \\ -3 & -3\end{array}\right],\left[\begin{array}{rr}3 & -4 \\ 2 & 2\end{array}\right]$
$c_{1}\left[\begin{array}{rr}-1 & 3 \\ -3 & -3\end{array}\right]+c_{2}\left[\begin{array}{rr}3 & -4 \\ 2 & 2\end{array}\right]=\left[\begin{array}{rr}-1 & -1 \\ 4 & -1\end{array}\right]$
$\Longrightarrow\left[\begin{array}{rr}-c_{1} & 3 c_{1} \\ -3 c_{1} & -3 c_{1}\end{array}\right]+\left[\begin{array}{rr}3 c_{2} & -4 c_{2} \\ 2 c_{2} & 2 c_{2}\end{array}\right]=\left[\begin{array}{rr}-1 & -1 \\ 4 & -1\end{array}\right]$
$\Longrightarrow\left[\begin{array}{rr}-c_{1}+3 c_{2} & 3 c_{1}-4 c_{2} \\ -3 c_{1}+2 c_{2} & -3 c_{1}+2 c_{2}\end{array}\right]=\left[\begin{array}{rr}-1 & -1 \\ 4 & -1\end{array}\right]$

Finding a Linear Combination (Example)

WEX 4-4-3:

Write $\left[\begin{array}{rr}-1 & -1 \\ 4 & -1\end{array}\right]$ as a linear combination of $\left[\begin{array}{rr}-1 & 3 \\ -3 & -3\end{array}\right],\left[\begin{array}{rr}3 & -4 \\ 2 & 2\end{array}\right]$

$$
\begin{aligned}
& c_{1}\left[\begin{array}{rr}
-1 & 3 \\
-3 & -3
\end{array}\right]+c_{2}\left[\begin{array}{rr}
3 & -4 \\
2 & 2
\end{array}\right]=\left[\begin{array}{rr}
-1 & -1 \\
4 & -1
\end{array}\right] \\
& \Longrightarrow\left[\begin{array}{rr}
-c_{1} & 3 c_{1} \\
-3 c_{1} & -3 c_{1}
\end{array}\right]+\left[\begin{array}{rr}
3 c_{2} & -4 c_{2} \\
2 c_{2} & 2 c_{2}
\end{array}\right]=\left[\begin{array}{rr}
-1 & -1 \\
4 & -1
\end{array}\right] \\
& \Longrightarrow\left[\begin{array}{rr}
-c_{1}+3 c_{2} & 3 c_{1}-4 c_{2} \\
-3 c_{1}+2 c_{2} & -3 c_{1}+2 c_{2}
\end{array}\right]=\left[\begin{array}{rr}
-1 & -1 \\
4 & -1
\end{array}\right]
\end{aligned}
$$

$$
\Longrightarrow\left\{\begin{aligned}
-c_{1}+3 c_{2} & =-1 \\
3 c_{1}-4 c_{2} & =-1 \\
-3 c_{1}+2 c_{2} & =4 \\
-3 c_{1}+2 c_{2} & =-1
\end{aligned}\right.
$$

Finding a Linear Combination (Example)

WEX 4-4-3:

Write $\left[\begin{array}{rr}-1 & -1 \\ 4 & -1\end{array}\right]$ as a linear combination of $\left[\begin{array}{rr}-1 & 3 \\ -3 & -3\end{array}\right],\left[\begin{array}{rr}3 & -4 \\ 2 & 2\end{array}\right]$

$$
c_{1}\left[\begin{array}{rr}
-1 & 3 \\
-3 & -3
\end{array}\right]+c_{2}\left[\begin{array}{rr}
3 & -4 \\
2 & 2
\end{array}\right]=\left[\begin{array}{rr}
-1 & -1 \\
4 & -1
\end{array}\right]
$$

$$
\Longrightarrow\left[\begin{array}{rr}
-c_{1} & 3 c_{1} \\
-3 c_{1} & -3 c_{1}
\end{array}\right]+\left[\begin{array}{rr}
3 c_{2} & -4 c_{2} \\
2 c_{2} & 2 c_{2}
\end{array}\right]=\left[\begin{array}{rr}
-1 & -1 \\
4 & -1
\end{array}\right]
$$

$$
\Longrightarrow\left[\begin{array}{rr}
-c_{1}+3 c_{2} & 3 c_{1}-4 c_{2} \\
-3 c_{1}+2 c_{2} & -3 c_{1}+2 c_{2}
\end{array}\right]=\left[\begin{array}{rr}
-1 & -1 \\
4 & -1
\end{array}\right]
$$

$$
\Longrightarrow\left\{\begin{aligned}
-c_{1}+3 c_{2} & =-1 \\
3 c_{1}-4 c_{2} & =-1 \\
-3 c_{1}+2 c_{2} & =4 \\
-3 c_{1}+2 c_{2} & =-1
\end{aligned}\right.
$$

$$
\Longrightarrow\left[\begin{array}{rr}
-1 & 3 \\
3 & -4 \\
-3 & 2 \\
-3 & 2
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{r}
-1 \\
-1 \\
4 \\
-1
\end{array}\right]
$$

Finding a Linear Combination (Example)

WEX 4-4-3:

Write $\left[\begin{array}{rr}-1 & -1 \\ 4 & -1\end{array}\right]$ as a linear combination of $\left[\begin{array}{rr}-1 & 3 \\ -3 & -3\end{array}\right],\left[\begin{array}{rr}3 & -4 \\ 2 & 2\end{array}\right]$
$\Longrightarrow\left[\begin{array}{rr}-1 & 3 \\ 3 & -4 \\ -3 & 2 \\ -3 & 2\end{array}\right]\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{r}-1 \\ -1 \\ 4 \\ -1\end{array}\right]$

Finding a Linear Combination (Example)

WEX 4-4-3:

Write $\left[\begin{array}{rr}-1 & -1 \\ 4 & -1\end{array}\right]$ as a linear combination of $\left[\begin{array}{rr}-1 & 3 \\ -3 & -3\end{array}\right],\left[\begin{array}{rr}3 & -4 \\ 2 & 2\end{array}\right]$

$$
\begin{aligned}
& \Longrightarrow\left[\begin{array}{rr}
-1 & 3 \\
3 & -4 \\
-3 & 2 \\
-3 & 2
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{r}
-1 \\
-1 \\
4 \\
-1
\end{array}\right] \\
& \Longrightarrow\left[\begin{array}{rr|r}
-1 & 3 & -1 \\
3 & -4 & -1 \\
-3 & 2 & 4 \\
-3 & 2 & -1
\end{array}\right]
\end{aligned}
$$

Finding a Linear Combination (Example)

WEX 4-4-3:

Write $\left[\begin{array}{rr}-1 & -1 \\ 4 & -1\end{array}\right]$ as a linear combination of $\left[\begin{array}{rr}-1 & 3 \\ -3 & -3\end{array}\right],\left[\begin{array}{rr}3 & -4 \\ 2 & 2\end{array}\right]$
$\Longrightarrow\left[\begin{array}{rr}-1 & 3 \\ 3 & -4 \\ -3 & 2 \\ -3 & 2\end{array}\right]\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{r}-1 \\ -1 \\ 4 \\ -1\end{array}\right]$
$\Longrightarrow\left[\begin{array}{rr|r}-1 & 3 & -1 \\ 3 & -4 & -1 \\ -3 & 2 & 4 \\ -3 & 2 & -1\end{array}\right] \sim\left[\begin{array}{rc|r}\hline 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$

Finding a Linear Combination (Example)

WEX 4-4-3:

Write $\left[\begin{array}{rr}-1 & -1 \\ 4 & -1\end{array}\right]$ as a linear combination of $\left[\begin{array}{rr}-1 & 3 \\ -3 & -3\end{array}\right],\left[\begin{array}{rr}3 & -4 \\ 2 & 2\end{array}\right]$
$\Longrightarrow\left[\begin{array}{rr}-1 & 3 \\ 3 & -4 \\ -3 & 2 \\ -3 & 2\end{array}\right]\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{r}-1 \\ -1 \\ 4 \\ -1\end{array}\right]$
$\Longrightarrow\left[\begin{array}{rr|r}-1 & 3 & -1 \\ 3 & -4 & -1 \\ -3 & 2 & 4 \\ -3 & 2 & -1\end{array}\right] \sim\left[\begin{array}{ll|l}\hline 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$
But interpreting the $3^{\text {rd }}$ row of the RREF yields: $0 c_{1}+0 c_{2}=1 \Longrightarrow 0=1 \leftarrow$ CONTRADICTION!

Finding a Linear Combination (Example)

WEX 4-4-3:

Write $\left[\begin{array}{rr}-1 & -1 \\ 4 & -1\end{array}\right]$ as a linear combination of $\left[\begin{array}{rr}-1 & 3 \\ -3 & -3\end{array}\right],\left[\begin{array}{rr}3 & -4 \\ 2 & 2\end{array}\right]$
$\Longrightarrow\left[\begin{array}{rr}-1 & 3 \\ 3 & -4 \\ -3 & 2 \\ -3 & 2\end{array}\right]\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{r}-1 \\ -1 \\ 4 \\ -1\end{array}\right]$
$\Longrightarrow\left[\begin{array}{rr|r}-1 & 3 & -1 \\ 3 & -4 & -1 \\ -3 & 2 & 4 \\ -3 & 2 & -1\end{array}\right] \sim\left[\begin{array}{ll|l}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$
But interpreting the $3^{\text {rd }}$ row of the RREF yields: $0 c_{1}+0 c_{2}=1 \Longrightarrow 0=1 \leftarrow$ CONTRADICTION!
Therefore, the linear system has no solution.
\therefore The desired linear combination is not possible

Finding a Linear Combination (Simplified Procedure)

Notice in the previous examples that in the resulting linear system $A \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{u}}$, the vectors $\overrightarrow{\mathbf{v}}_{1}, \ldots, \overrightarrow{\mathbf{v}}_{k}$ always formed the columns of A.
For polynomials, form each column using the coefficients of each polynomial.
Based on this observation, the procedure can be simplified:

Proposition

(Writing a Vector as a Linear Combination of other Vectors)
TASK: Write $\overrightarrow{\mathbf{u}} \in V$ as a linear combination of $\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}, \ldots, \overrightarrow{\mathbf{v}}_{k} \in V$.
(1) Let $\overrightarrow{\mathbf{c}}=\left\{c_{1}, c_{2}, \ldots, c_{k}\right\} \subseteq \mathbb{R}$ be scalars s.t. $c_{1} \overrightarrow{\mathbf{v}}_{1}+\cdots+c_{k} \overrightarrow{\mathbf{v}}_{k}=\overrightarrow{\mathbf{u}}$
(2) Solve $A \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{u}}$ for $\overrightarrow{\mathbf{c}}$ using Gauss-Jordan on $[A \mid \overrightarrow{\mathbf{u}}]=\left[\begin{array}{ccc|c}\mid & & \mid & \mid \\ \overrightarrow{\mathbf{v}}_{1} & \cdots & \overrightarrow{\mathbf{v}}_{k} & \overrightarrow{\mathbf{u}} \\ \mid & & \mid & \mid\end{array}\right]$
(\star) If there are infinitely many solutions,
let the parameters t, s, \ldots be any specific values (e.g. Let $t=1, s=0, \ldots$)
(\star) If there are no solutions (i.e. linear system is inconsistent), it's not possible to write $\overrightarrow{\mathbf{u}}$ as a linear combination of $\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}, \ldots, \overrightarrow{\mathbf{v}}_{k}$

PART II

PART II: SPANNING SETS OF VECTORS LINEAR INDEPENDENCE OF VECTORS

Spanning a Vector Space (Definitions)

Definition

(Spanning Set of a Vector Space)
Let V be a vector space and $S=\left\{\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}, \cdots, \overrightarrow{\mathbf{v}}_{k}\right\} \subseteq V$
Then the span of S is the set of all linear combination of vectors in S :
$\operatorname{span}(S) \equiv \operatorname{span}\left\{\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}, \cdots, \overrightarrow{\mathbf{v}}_{k}\right\}:=\left\{c_{1} \overrightarrow{\mathbf{v}}_{1}+c_{2} \overrightarrow{\mathbf{v}}_{2}+\cdots+c_{k} \overrightarrow{\mathbf{v}}_{k}: c_{1}, c_{2}, \cdots, c_{k} \in \mathbb{R}\right\}$
Moreover, S spans V if $\operatorname{span}(S)=V$.
i.e. S spans V if every vector of V can be written as a linear combination of vectors in S.

Theorem

(A Spanning Set is a Subspace)
Let V be a vector space and $S=\left\{\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}, \cdots, \overrightarrow{\mathbf{v}}_{k}\right\} \subseteq V$
Then $\operatorname{span}(S)$ is a subspace of V.
Moreover, $\operatorname{span}(S)$ is the smallest subspace of V that contains S.

Example Spanning Set (Procedure Motivation)

The set $S=\left\{\left[\begin{array}{c}\frac{1}{4} \\ -1\end{array}\right],\left[\begin{array}{c}\frac{1}{2} \\ -\frac{5}{2}\end{array}\right],\left[\begin{array}{r}-1 \\ 5\end{array}\right]\right\}$ spans \mathbb{R}^{2} :
Let $\overrightarrow{\mathbf{x}}=\left(x_{1}, x_{2}\right)^{T} \in \mathbb{R}^{2}$ be an arbitrary vector in \mathbb{R}^{2}.
Then if S spans $\mathbb{R}^{2}, \overrightarrow{\mathbf{x}}$ can be written as linear combination of vectors in S.

$$
\begin{aligned}
& \Longrightarrow c_{1}\left[\begin{array}{c}
\frac{1}{4} \\
-1
\end{array}\right]+c_{2}\left[\begin{array}{c}
\frac{1}{2} \\
-\frac{5}{2}
\end{array}\right]+c_{3}\left[\begin{array}{r}
-1 \\
5
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \text { where } c_{1}, c_{2}, c_{3} \in \mathbb{R} \\
& \Longrightarrow\left[\begin{array}{c}
\frac{1}{4} c_{1}+\frac{1}{2} c_{2}-c_{3} \\
-c_{1}-\frac{5}{2} c_{2}+5 c_{3}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \Longrightarrow\left[\begin{array}{ccc}
\frac{1}{4} & \frac{1}{2} & -1 \\
-1 & -\frac{5}{2} & 5
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
& \Longrightarrow[A \mid \overrightarrow{\mathbf{x}}]=\left[\begin{array}{ccc|c}
\frac{1}{4} & \frac{1}{2} & -1 & x_{1} \\
-1 & -\frac{5}{2} & 5 & x_{2}
\end{array}\right] \sim\left[\begin{array}{|ccc|c}
1 & 0 & 0 & \left(20 x_{1}+4 x_{2}\right) \\
0 & 1 & -2 & \left(-2 x_{2}-8 x_{1}\right)
\end{array}\right]
\end{aligned}
$$

$$
\Longrightarrow\left(c_{1}, c_{2}, c_{3}\right)^{T}=\left(20 x_{1}+4 x_{2}, 2 t-2 x_{2}-8 x_{1}, t\right)^{T}
$$

(parameter $t \in \mathbb{R}$)
$\Longrightarrow\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left(20 x_{1}+4 x_{2}\right)\left[\begin{array}{c}\frac{1}{4} \\ -1\end{array}\right]+\left(2 t-2 x_{2}-8 x_{1}\right)\left[\begin{array}{c}\frac{1}{2} \\ -\frac{5}{2}\end{array}\right]+t\left[\begin{array}{r}-1 \\ 5\end{array}\right]$
\Longrightarrow Every vector in V can be written as a linear combination of vectors in S.
$\therefore \quad S$ spans \mathbb{R}^{2}
Notice that every row of RREF of matrix A has a pivot!

Example non-Spanning Set (Procedure Motivation)

The set $S=\left\{\left[\begin{array}{l}2 \\ 4\end{array}\right],\left[\begin{array}{l}4 \\ 8\end{array}\right]\right\}$ does not span \mathbb{R}^{2} :
Let $\overrightarrow{\mathbf{x}}=\left(x_{1}, x_{2}\right)^{T} \in \mathbb{R}^{2}$ be an arbitrary vector in \mathbb{R}^{2}.
Then if S spans $\mathbb{R}^{2}, \overrightarrow{\mathbf{x}}$ can be written as linear combination of vectors in S.

$$
\begin{aligned}
& \Longrightarrow c_{1}\left[\begin{array}{l}
2 \\
4
\end{array}\right]+c_{2}\left[\begin{array}{l}
4 \\
8
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \text { where } c_{1}, c_{2} \in \mathbb{R} \\
& \Longrightarrow\left[\begin{array}{l}
2 c_{1}+4 c_{2} \\
4 c_{1}+8 c_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \Longrightarrow\left[\begin{array}{ll}
2 & 4 \\
4 & 8
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
& \Longrightarrow[A \mid \overrightarrow{\mathbf{x}}]=\left[\begin{array}{ll|l}
2 & 4 & x_{1} \\
4 & 8 & x_{2}
\end{array}\right] \sim\left[\begin{array}{|cc|c}
1 & 2 & \frac{1}{2} x_{1} \\
0 & 0 & \left(x_{2}-2 x_{1}\right)
\end{array}\right]
\end{aligned}
$$

Now, interpreting the $2^{\text {nd }}$ row yields $0 c_{1}+0 c_{2}=\left(x_{2}-2 x_{1}\right)$
which is only true for certain vectors in \mathbb{R}^{2} like $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ where $x_{2}-2 x_{1}=0$
However, there are vectors in \mathbb{R}^{2} like $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ where $x_{2}-2 x_{1} \neq 0$
Therefore, some vectors in \mathbb{R}^{2} are not linear combinations of vectors in S. Therefore, S does not span \mathbb{R}^{2}.

Notice that the $2^{\text {nd }}$ row of RREF of matrix A is all zeros!

Spanning Set Test (Procedure)

Proposition

(Testing whether a Set Spans a Vector Space or not)
TASK: Determine whether $S=\left\{\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}, \cdots, \overrightarrow{\mathbf{v}}_{k}\right\}$ spans vector space V.
(1) Let $\overrightarrow{\mathbf{x}} \in V$ be an arbitrary vector in V and $c_{1}, c_{2}, \ldots, c_{k} \in \mathbb{R}$ be unknown scalars such that

$$
c_{1} \overrightarrow{\mathbf{v}}_{1}+c_{2} \overrightarrow{\mathbf{v}}_{2}+\cdots+c_{k} \overrightarrow{\mathbf{v}}_{k}=\overrightarrow{\mathbf{x}}
$$

(2) Compute \& simplify/factor LHS expression: $c_{1} \overrightarrow{\mathbf{v}}_{1}+c_{2} \overrightarrow{\mathbf{v}}_{2}+\cdots+c_{k} \overrightarrow{\mathbf{v}}_{k}$
(3) Equate both sides of equation, component by component.
(4) Form coefficient matrix A from the LHS of the resulting linear system.
(5) Perform Gauss-Jordan Elimination on matrix A.
(\star) If every row of $R R E F(A)$ contains a pivot, then S spans V.
(\star) If $R R E F(A)$ contains a row of all zeros, then S does not span V.

Spanning Set Test (Simplified Procedure)

Fortunately, the procedure can be greatly simplified:

Proposition

(Testing whether a Set Spans a Vector Space or not)
TASK: Determine whether $S=\left\{\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}, \cdots, \overrightarrow{\mathbf{v}}_{k}\right\}$ spans vector space V.
(1) Form matrix A with $\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}, \cdots, \overrightarrow{\mathbf{v}}_{k}$ as its columns: $A=\left[\begin{array}{cccc}\mid & \mid & & \mid \\ \overrightarrow{\mathbf{v}}_{1} & \overrightarrow{\mathbf{v}}_{2} & \cdots & \overrightarrow{\mathbf{v}}_{k} \\ \mid & \mid & & \mid\end{array}\right]$
(2) Perform Gauss-Jordan Elimination on matrix A.
(\star) If every row of $R R E F(A)$ contains a pivot, then S spans V.
(\star) If $R R E F(A)$ contains a row of all zeros, then S does not span V.

Linear Independence of a Set of Vectors (Definition)

Definition

(Linear Independence \& Linear Dependence of a Set of Vectors)
Let V be a vector space.
Let $S=\left\{\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}, \cdots, \overrightarrow{\mathbf{v}}_{k}\right\} \subseteq V$
Then S is called linearly independent if the vector equation

$$
c_{1} \overrightarrow{\mathbf{v}}_{1}+c_{2} \overrightarrow{\mathbf{v}}_{2}+\cdots+c_{k} \overrightarrow{\mathbf{v}}_{k}=\overrightarrow{\mathbf{0}}
$$

has only the trivial solution (of all zeros): $c_{1}=0, c_{2}=0, \cdots, c_{k}=0$
If there are also nontrivial solutions, then S is called linearly dependent.

Linear Dependence \& Linear Combinations

Theorem

Let V be a vector space.
Let $S=\left\{\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}, \cdots, \overrightarrow{\mathbf{v}}_{k}\right\} \subseteq V$. Then:
At least one of the vectors in S can be written as a linear combination of the other vectors in S

Linear Dependence \& Linear Combinations

Theorem

Let V be a vector space.
Let $S=\left\{\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}, \cdots, \overrightarrow{\mathbf{v}}_{k}\right\} \subseteq V$. Then:
S is linearly dependent
At least one of the vectors in S can be written as a linear combination of the other vectors in S

PROOF:

(\Leftarrow) : Suppose at least 1 vector in S can be written as a linear combination of the other vectors in S

WLOG, assume $\overrightarrow{\mathbf{v}}_{1}$ can be written as a linear comb. of $\overrightarrow{\mathbf{v}}_{2}, \overrightarrow{\mathbf{v}}_{3}, \cdots, \overrightarrow{\mathbf{v}}_{k}$.
Then, $\overrightarrow{\mathbf{v}}_{1}=c_{2} \overrightarrow{\mathbf{v}}_{2}+c_{3} \overrightarrow{\mathbf{v}}_{3}+\cdots+c_{k} \overrightarrow{\mathbf{v}}_{k}$, where $c_{2}, c_{3}, \cdots, c_{k} \in \mathbb{R}$
$\Longrightarrow(-1) \overrightarrow{\mathbf{v}}_{1}+c_{2} \overrightarrow{\mathbf{v}}_{2}+c_{3} \overrightarrow{\mathbf{v}}_{3}+\cdots+c_{k} \overrightarrow{\mathbf{v}}_{k}=\overrightarrow{\mathbf{0}}$
$\Longrightarrow c_{1} \overrightarrow{\mathbf{v}}_{1}+c_{2} \overrightarrow{\mathbf{v}}_{2}+\cdots+c_{k} \overrightarrow{\mathbf{v}}_{k}=\overrightarrow{\mathbf{0}}$ has a nontrivial solution (since $c_{1}=-1 \neq 0$)
$\Longrightarrow S$ is linearly dependent

Linear Dependence \& Linear Combinations

Theorem

Let V be a vector space.
Let $S=\left\{\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}, \cdots, \overrightarrow{\mathbf{v}}_{k}\right\} \subseteq V$. Then:

S is linearly dependent \Longleftrightarrow

At least one of the vectors in S can be written as a linear combination of the other vectors in S

PROOF:

(\Rightarrow) : Suppose S is linearly dependent.
Then, $c_{1} \overrightarrow{\mathbf{v}}_{1}+c_{2} \overrightarrow{\mathbf{v}}_{2}+\cdots+c_{k} \overrightarrow{\mathbf{v}}_{k}=\overrightarrow{\mathbf{0}}$ has a nontrivial solution.
WLOG, assume $c_{1} \neq 0$. Then, $\overrightarrow{\mathbf{v}}_{1}=\left(-\frac{c_{2}}{c_{1}}\right) \overrightarrow{\mathbf{v}}_{2}+\left(-\frac{c_{3}}{c_{1}}\right) \overrightarrow{\mathbf{v}}_{3}+\cdots+\left(-\frac{c_{k}}{c_{1}}\right) \overrightarrow{\mathbf{v}}_{k}$
$\Longrightarrow \overrightarrow{\mathbf{v}}_{1}$ is a linear comb. of $\overrightarrow{\mathbf{v}}_{2}, \overrightarrow{\mathbf{v}}_{3}, \cdots, \overrightarrow{\mathbf{v}}_{k}$
\Longrightarrow At least one vector in S can be written as a linear combination of the other vectors in S.
QED

Examples of Linear Dependence

- Let $S=\{(1,1),(2,-1),(0,4),(1,12)\} \equiv\left\{\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}, \overrightarrow{\mathbf{v}}_{3}, \overrightarrow{\mathbf{v}}_{4}\right\} \subseteq \mathbb{R}^{2}$.

Then S is linearly dependent because $\overrightarrow{\mathbf{v}}_{4}=3 \overrightarrow{\mathbf{v}}_{1}-\overrightarrow{\mathbf{v}}_{2}+2 \overrightarrow{\mathbf{v}}_{3}=3(1,1)-(2,-1)+2(0,4)=(1,12)$

- Let $S=\left\{\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{c}-1 \\ 3 \\ 5\end{array}\right],\left[\begin{array}{c}0 \\ 5 \\ 10\end{array}\right]\right\} \equiv\left\{\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}, \overrightarrow{\mathbf{v}}_{3}\right\} \subseteq \mathbb{R}^{3}$.

Then S is linearly dependent because

$$
\overrightarrow{\mathbf{v}}_{3}=5 \overrightarrow{\mathbf{v}}_{1}+(0) \overrightarrow{\mathbf{v}}_{2}=5\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]+(0)\left[\begin{array}{c}
-1 \\
3 \\
5
\end{array}\right]=\left[\begin{array}{c}
0 \\
5 \\
10
\end{array}\right]
$$

- Let $S=\left\{(1,1,1,1)^{T},(8,8,8,8)^{T}\right\} \equiv\left\{\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}\right\} \subseteq \mathbb{R}^{4}$.

Then S is linearly dependent because

$$
\begin{aligned}
& \overrightarrow{\mathbf{v}}_{2}=8 \overrightarrow{\mathbf{v}}_{1}=8(1,1,1,1)^{T}=(8,8,8,8)^{T} \quad \text { OR } \\
& \overrightarrow{\mathbf{v}}_{1}=\frac{1}{8} \overrightarrow{\mathbf{v}}_{2}=\frac{1}{8}(8,8,8,8)^{T}=(1,1,1,1)^{T}
\end{aligned}
$$

Examples of Linear Dependence

- $S=\left\{\left[\begin{array}{lll}3 & 4 & 8 \\ 2 & 5 & 5\end{array}\right],\left[\begin{array}{lll}1 & 2 & 2 \\ 0 & 3 & 1\end{array}\right],\left[\begin{array}{lll}1 & 1 & 3 \\ 1 & 1 & 2\end{array}\right]\right\} \equiv\left\{A_{1}, A_{2}, A_{3}\right\} \subseteq \mathbb{R}^{2 \times 3}$.

Then S is linearly dependent because

$$
A_{1}=(1) A_{2}+2 A_{3}=(1)\left[\begin{array}{lll}
1 & 2 & 2 \\
0 & 3 & 1
\end{array}\right]+(2)\left[\begin{array}{lll}
1 & 1 & 3 \\
1 & 1 & 2
\end{array}\right]=\left[\begin{array}{lll}
3 & 4 & 8 \\
2 & 5 & 5
\end{array}\right]
$$

- $S=\left\{2-t^{3}, t^{2}-t+5,4 t^{2}, 6, t-t^{2}-3 t^{3}\right\} \equiv\left\{p_{1}(t), p_{2}(t), p_{3}(t), p_{4}(t), p_{5}(t)\right\} \subseteq P_{3}$

Then S is linearly dependent because

$$
\begin{aligned}
p_{5}(t) & =3 p_{1}(t)+(-1) p_{2}(t)+(0) p_{3}(t)-\frac{1}{6} p_{4}(t) \\
& =3\left(2-t^{3}\right)+(-1)\left(t^{2}-t+5\right)+(0)\left(4 t^{2}\right)-\frac{1}{6}(6) \\
& =6-3 t^{3}-t^{2}+t-5+0-1 \\
& =t-t^{2}-3 t^{3}
\end{aligned}
$$

- Let $S=\left\{\left[\begin{array}{c}1 \\ -3\end{array}\right],\left[\begin{array}{l}-7 \\ -5\end{array}\right],\left[\begin{array}{l}0 \\ 0\end{array}\right]\right\} \equiv\left\{\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}, \overrightarrow{\mathbf{v}}_{3}\right\} \subseteq \mathbb{R}^{2}$

Then S is linearly dependent because

$$
\overrightarrow{\mathbf{v}}_{3}=(0) \overrightarrow{\mathbf{v}}_{1}+(0) \overrightarrow{\mathbf{v}}_{2}=(0)\left[\begin{array}{c}
1 \\
-3
\end{array}\right]+(0)\left[\begin{array}{l}
-7 \\
-5
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Linear Independence Test (Procedure)

Proposition

(Testing whether a Set of Vectors is Linearly Independent or not)
TASK: Determine whether $S=\left\{\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}, \cdots, \overrightarrow{\mathbf{v}}_{k}\right\}$ is linearly independent.
(1) Let $c_{1}, c_{2}, \ldots, c_{k} \in \mathbb{R}$ be unknown scalars s.t. $c_{1} \overrightarrow{\mathbf{v}}_{1}+c_{2} \overrightarrow{\mathbf{v}}_{2}+\cdots+c_{k} \overrightarrow{\mathbf{v}}_{k}=\overrightarrow{\mathbf{0}}$
(2) Compute \& simplify/factor LHS expression: $c_{1} \overrightarrow{\mathbf{v}}_{1}+c_{2} \overrightarrow{\mathbf{v}}_{2}+\cdots+c_{k} \overrightarrow{\mathbf{v}}_{k}$
(3) Equate both sides of equation, component by component.
(4) Form coefficient matrix A from the LHS of the resulting linear system.
(5) Perform Gauss-Jordan Elimination on matrix A.
(\star) If every column of RREF(A) contains a pivot, S is linearly independent.
(\star) If RREF(A) contains column(s) without a pivot, S is linearly dependent. Non-pivot columns of A are linear combinations of pivot columns of A. Such linear comb's are expressed in the non-pivot columns of RREF(A).

Linear Independence Test (Simplified Procedure)

Fortunately, the procedure can be greatly simplified:

Proposition

(Testing whether a Set of Vectors is Linearly Independent or not)
TASK: Determine whether $S=\left\{\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}, \cdots, \overrightarrow{\mathbf{v}}_{k}\right\}$ is linearly independent.
(1) Form matrix A with $\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}, \cdots, \overrightarrow{\mathbf{v}}_{k}$ as its columns: $A=\left[\begin{array}{cccc}\mid & \mid & & \mid \\ \overrightarrow{\mathbf{v}}_{1} & \overrightarrow{\mathbf{v}}_{2} & \cdots & \overrightarrow{\mathbf{v}}_{k} \\ \mid & \mid & & \mid\end{array}\right]$
(2) Perform Gauss-Jordan Elimination on matrix A.
(\star) If every column of RREF(A) contains a pivot, S is linearly independent.
(\star) If $R R E F(A)$ contains column(s) without a pivot, S is linearly dependent. Non-pivot columns of A are linear combinations of pivot columns of A. Such linear comb's are expressed in the non-pivot columns of RREF(A).

Spans \& Linear Independence (Example)

WEX 4-4-4: Let $S=\left\{\left[\begin{array}{r}0 \\ -4 \\ 2\end{array}\right],\left[\begin{array}{r}2 \\ -3 \\ 2\end{array}\right]\right\} \equiv\left\{\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}\right\} \subseteq \mathbb{R}^{3}$
(a) Does S span \mathbb{R}^{3} ? \quad (b) Is S linearly independent or dependent?

Spans \& Linear Independence (Example)

WEX 4-4-4: Let $S=\left\{\left[\begin{array}{r}0 \\ -4 \\ 2\end{array}\right],\left[\begin{array}{r}2 \\ -3 \\ 2\end{array}\right]\right\} \equiv\left\{\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}\right\} \subseteq \mathbb{R}^{3}$
(a) Does S span \mathbb{R}^{3} ? \quad (b) Is S linearly independent or dependent?

Let $A=\left[\begin{array}{cc}\mid & \mid \\ \overrightarrow{\mathbf{v}}_{1} & \overrightarrow{\mathbf{v}}_{2} \\ \mid & \mid\end{array}\right]=\left[\begin{array}{rr}0 & 2 \\ -4 & -3 \\ 2 & 2\end{array}\right]$. Then Gauss-Jordan applied to A yields:

$$
\left[\begin{array}{rr}
0 & 2 \\
-4 & -3 \\
2 & 2
\end{array}\right] \sim\left[\begin{array}{rr}
2 & 2 \\
-4 & -3 \\
0 & 2
\end{array}\right] \sim\left[\begin{array}{rr}
\boxed{1} & 1 \\
-4 & -3 \\
0 & 2
\end{array}\right] \sim\left[\begin{array}{rr}
\boxed{1} & 1 \\
0 & \boxed{1} \\
0 & 2
\end{array}\right] \sim\left[\begin{array}{cc}
1 & 0 \\
0 & \boxed{1} \\
0 & 0
\end{array}\right]
$$

Spans \& Linear Independence (Example)

WEX 4-4-4: Let $S=\left\{\left[\begin{array}{r}0 \\ -4 \\ 2\end{array}\right],\left[\begin{array}{r}2 \\ -3 \\ 2\end{array}\right]\right\} \equiv\left\{\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}\right\} \subseteq \mathbb{R}^{3}$
(a) Does S span \mathbb{R}^{3} ?
(b) Is S linearly independent or dependent?

Let $A=\left[\begin{array}{cc}\mid & \mid \\ \overrightarrow{\mathbf{v}}_{1} & \overrightarrow{\mathbf{v}}_{2} \\ \mid & \mid\end{array}\right]=\left[\begin{array}{rr}0 & 2 \\ -4 & -3 \\ 2 & 2\end{array}\right]$. Then Gauss-Jordan applied to A yields: $\left[\begin{array}{rr}0 & 2 \\ -4 & -3 \\ 2 & 2\end{array}\right] \sim\left[\begin{array}{rr}2 & 2 \\ -4 & -3 \\ 0 & 2\end{array}\right] \sim\left[\begin{array}{rr}\boxed{1} & 1 \\ -4 & -3 \\ 0 & 2\end{array}\right] \sim\left[\begin{array}{rr}1 & 1 \\ 0 & 1 \\ 0 & 2\end{array}\right] \sim\left[\begin{array}{cc}1 & 0 \\ 0 & \boxed{1} \\ 0 & 0\end{array}\right]$
(a) $\operatorname{RREF}(A)$ contains a row of zeros $\Longrightarrow S$ does not span \mathbb{R}^{3}
(b) Every column of $\operatorname{RREF}(A)$ contains a pivot $\Longrightarrow S$ is linearly independent

Spans \& Linear Independence (Example)

WEX 4-4-5: Let
$S=\left\{1+4 t+t^{2}, 2+2 t-t^{2},-2-4 t, 1-2 t,-2-2 t+t^{2}\right\} \equiv\left\{p_{1}, p_{2}, p_{3}, p_{4}, p_{5}\right\}$
(a) Does S span P_{2} ?
(b) Is S linearly independent or dependent?

Spans \& Linear Independence (Example)

WEX 4-4-5: Let
$S=\left\{1+4 t+t^{2}, 2+2 t-t^{2},-2-4 t, 1-2 t,-2-2 t+t^{2}\right\} \equiv\left\{p_{1}, p_{2}, p_{3}, p_{4}, p_{5}\right\}$
(a) Does S span P_{2} ?
(b) Is S linearly independent or dependent?

Let $A=\left[\begin{array}{ccccc}\mid & \mid & \mid & \mid & \mid \\ p_{1}(t) & p_{2}(t) & p_{3}(t) & p_{4}(t) & p_{5}(t) \\ \mid & \mid & \mid & \mid & \mid\end{array}\right]=\left[\begin{array}{rrrrr}1 & 2 & -2 & 1 & -2 \\ 4 & 2 & -4 & -2 & -2 \\ 1 & -1 & 0 & 0 & 1\end{array}\right]$.
Then:

$$
\left[\begin{array}{rrrrr}
1 & 2 & -2 & 1 & -2 \\
4 & 2 & -4 & -2 & -2 \\
1 & -1 & 0 & 0 & 1
\end{array}\right] \sim \cdots \sim\left[\begin{array}{ccccc}
\hline 1 & 0 & -2 / 3 & 0 & 0 \\
0 & \boxed{1} & -2 / 3 & 0 & -1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Spans \& Linear Independence (Example)

WEX 4-4-5: Let
$S=\left\{1+4 t+t^{2}, 2+2 t-t^{2},-2-4 t, 1-2 t,-2-2 t+t^{2}\right\} \equiv\left\{p_{1}, p_{2}, p_{3}, p_{4}, p_{5}\right\}$
(a) Does S span P_{2} ?
(b) Is S linearly independent or dependent?

Let $A=\left[\begin{array}{cccc}\mid & \mid & \mid & \mid \\ p_{1}(t) & p_{2}(t) & p_{3}(t) & p_{4}(t) \\ \mid & \mid & \mid & \mid\end{array}\left|\begin{array}{c}p_{5}(t) \\ \mid\end{array}\right| \begin{array}{rrrrr}1 & 2 & -2 & 1 & -2 \\ 4 & 2 & -4 & -2 & -2 \\ 1 & -1 & 0 & 0 & 1\end{array}\right]$.
Then:
$\left[\begin{array}{rrrrr}1 & 2 & -2 & 1 & -2 \\ 4 & 2 & -4 & -2 & -2 \\ 1 & -1 & 0 & 0 & 1\end{array}\right] \sim \cdots \sim\left[\begin{array}{ccccc}\hline 1 & 0 & -2 / 3 & 0 & 0 \\ 0 & 1 & -2 / 3 & 0 & -1 \\ 0 & 0 & 0 & 1 & 0\end{array}\right]$
(a) Every row of $\operatorname{RREF}(A)$ contains a pivot $\Longrightarrow S$ spans P_{2}
(b) Columns 3 \& 5 of $\operatorname{RREF}(A)$ contain no pivot $\Longrightarrow S$ is linearly dependent

Spans \& Linear Independence (Example)

WEX 4-4-5: Let
$S=\left\{1+4 t+t^{2}, 2+2 t-t^{2},-2-4 t, 1-2 t,-2-2 t+t^{2}\right\} \equiv\left\{p_{1}, p_{2}, p_{3}, p_{4}, p_{5}\right\}$
(a) Does S span P_{2} ?
(b) Is S linearly independent or dependent?

Let $A=\left[\begin{array}{ccccc}\mid & \mid & \mid & \mid & \mid \\ p_{1}(t) & p_{2}(t) & p_{3}(t) & p_{4}(t) & p_{5}(t) \\ \mid & \mid & \mid & \mid & \mid\end{array}\right]=\left[\begin{array}{rrrrr}1 & 2 & -2 & 1 & -2 \\ 4 & 2 & -4 & -2 & -2 \\ 1 & -1 & 0 & 0 & 1\end{array}\right]$.
Then:
$\left[\begin{array}{rrrrr}1 & 2 & -2 & 1 & -2 \\ 4 & 2 & -4 & -2 & -2 \\ 1 & -1 & 0 & 0 & 1\end{array}\right] \sim \cdots \sim\left[\begin{array}{ccccc}\boxed{1} & 0 & -2 / 3 & 0 & 0 \\ 0 & \boxed{1} & -2 / 3 & 0 & -1 \\ 0 & 0 & 0 & 1 & 0\end{array}\right]$
(a) Every row of $\operatorname{RREF}(A)$ contains a pivot $\Longrightarrow S$ spans P_{2}
(b) Columns $3 \& 5$ of $\operatorname{RREF}(A)$ contain no pivot $\Longrightarrow S$ is linearly dependent (Column 3 of $A)=\left(-\frac{2}{3}\right)\left(1^{\text {st }}\right.$ Pivot Column of $\left.A\right)+\left(-\frac{2}{3}\right)\left(2^{\text {nd }}\right.$ Pivot Column of $\left.A\right)$ $p_{3}(t)=\left(-\frac{2}{3}\right) p_{1}(t)+\left(-\frac{2}{3}\right) p_{2}(t)$
$-2-4 t=\left(-\frac{2}{3}\right)\left(1+4 t+t^{2}\right)+\left(-\frac{2}{3}\right)\left(2+2 t-t^{2}\right)$

Spans \& Linear Independence (Example)

WEX 4-4-5: Let
$S=\left\{1+4 t+t^{2}, 2+2 t-t^{2},-2-4 t, 1-2 t,-2-2 t+t^{2}\right\} \equiv\left\{p_{1}, p_{2}, p_{3}, p_{4}, p_{5}\right\}$
(a) Does S span P_{2} ?

Let $A=\left[\begin{array}{ccccc}\mid & \mid & \mid & \mid & \mid \\ p_{1}(t) & p_{2}(t) & p_{3}(t) & p_{4}(t) & p_{5}(t) \\ \mid & \mid & \mid & \mid & \mid\end{array}\right]=\left[\begin{array}{rrrrr}1 & 2 & -2 & 1 & -2 \\ 4 & 2 & -4 & -2 & -2 \\ 1 & -1 & 0 & 0 & 1\end{array}\right]$.
Then:

$$
\left[\begin{array}{rrrrr}
1 & 2 & -2 & 1 & -2 \\
4 & 2 & -4 & -2 & -2 \\
1 & -1 & 0 & 0 & 1
\end{array}\right] \sim \cdots \sim\left[\begin{array}{ccccc}
\hline 1 & 0 & -2 / 3 & 0 & 0 \\
0 & \boxed{1} & -2 / 3 & 0 & -1 \\
0 & 0 & 0 & \boxed{1} & 0
\end{array}\right]
$$

(a) Every row of $\operatorname{RREF}(A)$ contains a pivot $\Longrightarrow S$ spans P_{2}
(b) Columns $3 \& 5$ of $\operatorname{RREF}(A)$ contain no pivot $\Longrightarrow S$ is linearly dependent $($ Column 3 of $A)=\left(-\frac{2}{3}\right)\left(1^{\text {st }}\right.$ Pivot Column of $\left.A\right)+\left(-\frac{2}{3}\right)\left(2^{\text {nd }}\right.$ Pivot Column of $\left.A\right)$ (Column 5 of $A)=(-1)\left(2^{\text {nd }}\right.$ Pivot Column of $\left.A\right)$
$p_{5}(t)=(-1) p_{2}(t) \Longrightarrow-2-2 t+t^{2}=(-1)\left(2+2 t-t^{2}\right)$

Fin.

