# Vector Spaces: Basis \& Dimension Linear Algebra 

Josh Engwer

TTU
09 October 2015

## Basis for a Vector Space

## Definition

(Basis of a Vector Space)
Let $V$ be a vector space and $\mathcal{S}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\} \subseteq V$ Then $\mathcal{S}$ is a basis for $V$ if:
$\mathcal{S}$ spans $V$ AND $\mathcal{S}$ is linearly independent
Moreover, each vector in a basis is called a basis vector.

## Definition

(Dimension of a Vector Space)
Let $\mathcal{B}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ be a basis for vector space $V$.
Then the dimension of $V$ is the \# of basis vectors in $\mathcal{B}$ : $\operatorname{dim}(V)=k$
Let vector space $Z$ contain only the zero vector. Then $\operatorname{dim}(Z):=0$

## Basis (Example)

WEX 4-5-1: Let $\mathcal{S}=\left\{\left[\begin{array}{r}0 \\ -4 \\ 2\end{array}\right],\left[\begin{array}{r}2 \\ -3 \\ 2\end{array}\right]\right\} \equiv\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\} \subseteq \mathbb{R}^{3}$ Is $\mathcal{S}$ a basis for $\mathbb{R}^{3}$ ? If so, what is the dimension of $\mathbb{R}^{3}$ ?

## Basis (Example)

WEX 4-5-1: Let $\mathcal{S}=\left\{\left[\begin{array}{r}0 \\ -4 \\ 2\end{array}\right],\left[\begin{array}{r}2 \\ -3 \\ 2\end{array}\right]\right\} \equiv\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\} \subseteq \mathbb{R}^{3}$ Is $\mathcal{S}$ a basis for $\mathbb{R}^{3}$ ? If so, what is the dimension of $\mathbb{R}^{3}$ ?

Let $\quad A=\left[\begin{array}{cc}\mid & \mid \\ \mathbf{v}_{1} & \mathbf{v}_{2} \\ \mid & \mid\end{array}\right]=\left[\begin{array}{rr}0 & 2 \\ -4 & -3 \\ 2 & 2\end{array}\right]$.
Then: $\quad A=\left[\begin{array}{rr}0 & 2 \\ -4 & -3 \\ 2 & 2\end{array}\right] \xrightarrow{\text { Gauss }- \text { Jordan }}\left[\begin{array}{cc}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right]=\operatorname{RREF}(A)$

## Basis (Example)

WEX 4-5-1: Let $\mathcal{S}=\left\{\left[\begin{array}{r}0 \\ -4 \\ 2\end{array}\right],\left[\begin{array}{r}2 \\ -3 \\ 2\end{array}\right]\right\} \equiv\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\} \subseteq \mathbb{R}^{3}$ Is $\mathcal{S}$ a basis for $\mathbb{R}^{3}$ ? If so, what is the dimension of $\mathbb{R}^{3}$ ?

Let $\quad A=\left[\begin{array}{cc}\mid & \mid \\ \mathbf{v}_{1} & \mathbf{v}_{2} \\ \mid & \mid\end{array}\right]=\left[\begin{array}{rr}0 & 2 \\ -4 & -3 \\ 2 & 2\end{array}\right]$.
Then: $\quad A=\left[\begin{array}{rr}0 & 2 \\ -4 & -3 \\ 2 & 2\end{array}\right] \xrightarrow{\text { Gauss }- \text { Jordan }}\left[\begin{array}{cc}\hline 1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right]=\operatorname{RREF}(A)$
$\operatorname{RREF}(A)$ contains a row of zeros $\Longrightarrow \mathcal{S}$ does not span $\mathbb{R}^{3}$
Every column of $\operatorname{RREF}(A)$ contains a pivot $\Longrightarrow \mathcal{S}$ is linearly independent

## Basis (Example)

WEX 4-5-1: Let $\mathcal{S}=\left\{\left[\begin{array}{r}0 \\ -4 \\ 2\end{array}\right],\left[\begin{array}{r}2 \\ -3 \\ 2\end{array}\right]\right\} \equiv\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\} \subseteq \mathbb{R}^{3}$ Is $\mathcal{S}$ a basis for $\mathbb{R}^{3}$ ? If so, what is the dimension of $\mathbb{R}^{3}$ ?
Let $\quad A=\left[\begin{array}{cc}\mid & \mid \\ \mathbf{v}_{1} & \mathbf{v}_{2} \\ \mid & \mid\end{array}\right]=\left[\begin{array}{rr}0 & 2 \\ -4 & -3 \\ 2 & 2\end{array}\right]$.
Then: $\quad A=\left[\begin{array}{rr}0 & 2 \\ -4 & -3 \\ 2 & 2\end{array}\right] \xrightarrow{\text { Gauss }- \text { Jordan }}\left[\begin{array}{cc}\hline 1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right]=\operatorname{RREF}(A)$
$\operatorname{RREF}(A)$ contains a row of zeros $\Longrightarrow \mathcal{S}$ does not span $\mathbb{R}^{3}$
Every column of $\operatorname{RREF}(A)$ contains a pivot $\Longrightarrow \mathcal{S}$ is linearly independent Since $\mathcal{S}$ is does not span $\mathbb{R}^{3}, \mathcal{S}$ is not a basis for $\mathbb{R}^{3}$

## Basis (Example)

WEX 4-5-2: Let $\mathcal{S}=\left\{\begin{array}{c}1+4 t+t^{2}, 2+2 t-t^{2}, \\ -2-4 t, 1-2 t,-2-2 t+t^{2}\end{array}\right\} \equiv\left\{p_{1}, p_{2}, p_{3}, p_{4}, p_{5}\right\}$
Is $\mathcal{S}$ a basis for $P_{2}$ ? If so, what is the dimension of $P_{2}$ ?

## Basis (Example)

WEX 4-5-2: Let $\mathcal{S}=\left\{\begin{array}{c}1+4 t+t^{2}, 2+2 t-t^{2}, \\ -2-4 t, 1-2 t,-2-2 t+t^{2}\end{array}\right\} \equiv\left\{p_{1}, p_{2}, p_{3}, p_{4}, p_{5}\right\}$ Is $\mathcal{S}$ a basis for $P_{2}$ ? If so, what is the dimension of $P_{2}$ ?

Let $A=\left[\begin{array}{ccccc}\mid & \mid & \mid & \mid & \mid \\ p_{1}(t) & p_{2}(t) & p_{3}(t) & p_{4}(t) & p_{5}(t) \\ \mid & \mid & \mid & \mid & \mid\end{array}\right]=\left[\begin{array}{rrrrr}1 & 2 & -2 & 1 & -2 \\ 4 & 2 & -4 & -2 & -2 \\ 1 & -1 & 0 & 0 & 1\end{array}\right]$.
Then:
$A=\left[\begin{array}{rrrrr}1 & 2 & -2 & 1 & -2 \\ 4 & 2 & -4 & -2 & -2 \\ 1 & -1 & 0 & 0 & 1\end{array}\right] \xrightarrow{\text { Gauss }- \text { Jordan }} \underbrace{\left[\begin{array}{ccccc}\boxed{1} & 0 & -2 / 3 & 0 & 0 \\ 0 & 1 & -2 / 3 & 0 & -1 \\ 0 & 0 & 0 & 1 & 0\end{array}\right]}_{\operatorname{RREF}(A)}$

## Basis (Example)

WEX 4-5-2: Let $\mathcal{S}=\left\{\begin{array}{c}1+4 t+t^{2}, 2+2 t-t^{2}, \\ -2-4 t, 1-2 t,-2-2 t+t^{2}\end{array}\right\} \equiv\left\{p_{1}, p_{2}, p_{3}, p_{4}, p_{5}\right\}$ Is $\mathcal{S}$ a basis for $P_{2}$ ? If so, what is the dimension of $P_{2}$ ?
Let $A=\left[\begin{array}{ccccc}\mid & \mid & \mid & \mid & \mid \\ p_{1}(t) & p_{2}(t) & p_{3}(t) & p_{4}(t) & p_{5}(t) \\ \mid & \mid & \mid & \mid & \mid\end{array}\right]=\left[\begin{array}{rrrrr}1 & 2 & -2 & 1 & -2 \\ 4 & 2 & -4 & -2 & -2 \\ 1 & -1 & 0 & 0 & 1\end{array}\right]$.
Then:
$A=\left[\begin{array}{rrrrr}1 & 2 & -2 & 1 & -2 \\ 4 & 2 & -4 & -2 & -2 \\ 1 & -1 & 0 & 0 & 1\end{array}\right] \xrightarrow{\text { Gauss-Jordan }} \underbrace{\left[\begin{array}{ccccc}\boxed{1} & 0 & -2 / 3 & 0 & 0 \\ 0 & 1 & -2 / 3 & 0 & -1 \\ 0 & 0 & 0 & \boxed{1} & 0\end{array}\right]}_{\operatorname{RREF}(A)}$
Every row of $\operatorname{RREF}(A)$ contains a pivot $\Longrightarrow \mathcal{S}$ spans $P_{2}$
Columns $3 \& 5$ of $\operatorname{RREF}(A)$ contain no pivot $\Longrightarrow \mathcal{S}$ is linearly dependent

## Basis (Example)

WEX 4-5-2: Let $\mathcal{S}=\left\{\begin{array}{c}1+4 t+t^{2}, 2+2 t-t^{2}, \\ -2-4 t, 1-2 t,-2-2 t+t^{2}\end{array}\right\} \equiv\left\{p_{1}, p_{2}, p_{3}, p_{4}, p_{5}\right\}$ Is $\mathcal{S}$ a basis for $P_{2}$ ? If so, what is the dimension of $P_{2}$ ?
Let $A=\left[\begin{array}{ccccc}\mid & \mid & \mid & \mid & \mid \\ p_{1}(t) & p_{2}(t) & p_{3}(t) & p_{4}(t) & p_{5}(t) \\ \mid & \mid & \mid & \mid & \mid\end{array}\right]=\left[\begin{array}{rrrrr}1 & 2 & -2 & 1 & -2 \\ 4 & 2 & -4 & -2 & -2 \\ 1 & -1 & 0 & 0 & 1\end{array}\right]$.
Then:
$A=\left[\begin{array}{rrrrr}1 & 2 & -2 & 1 & -2 \\ 4 & 2 & -4 & -2 & -2 \\ 1 & -1 & 0 & 0 & 1\end{array}\right] \xrightarrow{\text { Gauss-Jordan }} \underbrace{\left[\begin{array}{ccccc}\boxed{1} & 0 & -2 / 3 & 0 & 0 \\ 0 & \boxed{1} & -2 / 3 & 0 & -1 \\ 0 & 0 & 0 & \boxed{1} & 0\end{array}\right]}_{\operatorname{RREF}(A)}$
Every row of $\operatorname{RREF}(A)$ contains a pivot $\Longrightarrow \mathcal{S}$ spans $P_{2}$
Columns $3 \& 5$ of $\operatorname{RREF}(A)$ contain no pivot $\Longrightarrow \mathcal{S}$ is linearly dependent Since $\mathcal{S}$ is not linearly independent, $\mathcal{S}$ is not a basis for $P_{2}$

## Basis (Example)

WEX 4-5-3: Let $\mathcal{S}=\left\{\left[\begin{array}{l}4 \\ 0 \\ 3\end{array}\right],\left[\begin{array}{r}-3 \\ -1 \\ 4\end{array}\right],\left[\begin{array}{l}3 \\ 4 \\ 1\end{array}\right]\right\} \equiv\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\} \subseteq \mathbb{R}^{3}$ Is $\mathcal{S}$ a basis for $\mathbb{R}^{3}$ ? If so, what is the dimension of $\mathbb{R}^{3}$ ?

## Basis (Example)

WEX 4-5-3: Let $\mathcal{S}=\left\{\left[\begin{array}{l}4 \\ 0 \\ 3\end{array}\right],\left[\begin{array}{r}-3 \\ -1 \\ 4\end{array}\right],\left[\begin{array}{l}3 \\ 4 \\ 1\end{array}\right]\right\} \equiv\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\} \subseteq \mathbb{R}^{3}$ Is $\mathcal{S}$ a basis for $\mathbb{R}^{3}$ ? If so, what is the dimension of $\mathbb{R}^{3}$ ?

Let $\quad A=\left[\begin{array}{ccc}\mid & \mid & \mid \\ \mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3} \\ \mid & \mid & \mid\end{array}\right]=\left[\begin{array}{rrr}4 & -3 & 3 \\ 0 & -1 & 4 \\ 3 & 4 & 1\end{array}\right]$.
Then: $\quad A=\left[\begin{array}{rrr}4 & -3 & 3 \\ 0 & -1 & 4 \\ 3 & 4 & 1\end{array}\right] \xrightarrow{\text { Gauss }- \text { Jordan }}\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\operatorname{RREF}(A)$

## Basis (Example)

WEX 4-5-3: Let $\mathcal{S}=\left\{\left[\begin{array}{l}4 \\ 0 \\ 3\end{array}\right],\left[\begin{array}{r}-3 \\ -1 \\ 4\end{array}\right],\left[\begin{array}{l}3 \\ 4 \\ 1\end{array}\right]\right\} \equiv\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\} \subseteq \mathbb{R}^{3}$ Is $\mathcal{S}$ a basis for $\mathbb{R}^{3}$ ? If so, what is the dimension of $\mathbb{R}^{3}$ ?

Let $\quad A=\left[\begin{array}{ccc}\mid & \mid & \mid \\ \mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3} \\ \mid & \mid & \mid\end{array}\right]=\left[\begin{array}{rrr}4 & -3 & 3 \\ 0 & -1 & 4 \\ 3 & 4 & 1\end{array}\right]$.
Then: $\quad A=\left[\begin{array}{rrr}4 & -3 & 3 \\ 0 & -1 & 4 \\ 3 & 4 & 1\end{array}\right] \xrightarrow{\text { Gauss }- \text { Jordan }}\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \boxed{1} & 0 \\ 0 & 0 & 1\end{array}\right]=\operatorname{RREF}(A)$
Every row of $\operatorname{RREF}(A)$ contains a pivot $\Longrightarrow \mathcal{S}$ spans $\mathbb{R}^{3}$
Every column of $\operatorname{RREF}(A)$ contains a pivot $\Longrightarrow \mathcal{S}$ is linearly independent

## Basis (Example)

WEX 4-5-3: Let $\mathcal{S}=\left\{\left[\begin{array}{l}4 \\ 0 \\ 3\end{array}\right],\left[\begin{array}{r}-3 \\ -1 \\ 4\end{array}\right],\left[\begin{array}{l}3 \\ 4 \\ 1\end{array}\right]\right\} \equiv\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\} \subseteq \mathbb{R}^{3}$ Is $\mathcal{S}$ a basis for $\mathbb{R}^{3}$ ? If so, what is the dimension of $\mathbb{R}^{3}$ ?
Let $\quad A=\left[\begin{array}{ccc}\mid & \mid & \mid \\ \mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3} \\ \mid & \mid & \mid\end{array}\right]=\left[\begin{array}{rrr}4 & -3 & 3 \\ 0 & -1 & 4 \\ 3 & 4 & 1\end{array}\right]$.
Then: $\quad A=\left[\begin{array}{rrr}4 & -3 & 3 \\ 0 & -1 & 4 \\ 3 & 4 & 1\end{array}\right] \xrightarrow{\text { Gauss-Jordan }}\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \boxed{1} & 0 \\ 0 & 0 & 1\end{array}\right]=\operatorname{RREF}(A)$
Every row of $\operatorname{RREF}(A)$ contains a pivot $\Longrightarrow \mathcal{S}$ spans $\mathbb{R}^{3}$
Every column of $\operatorname{RREF}(A)$ contains a pivot $\Longrightarrow \mathcal{S}$ is linearly independent Since $\mathcal{S}$ spans $\mathbb{R}^{3}$ and $\mathcal{S}$ is linearly independent, $\mathcal{S}$ is a basis for $\mathbb{R}^{3}$ $\operatorname{dim}\left(\mathbb{R}^{3}\right)=(\#$ of basis vectors in $\mathcal{S})=3$

## Basis (Example)

## WEX 4-5-4: Let

$\mathcal{S}=\left\{1+2 t-2 t^{2}, 1+t-2 t^{2},-3+3 t^{2}\right\} \equiv\left\{p_{1}(t), p_{2}(t), p_{3}(t)\right\} \subseteq P_{2}$ Is $\mathcal{S}$ a basis for $P_{2}$ ? If so, what is the dimension of $P_{2}$ ?

## Basis (Example)

## WEX 4-5-4: Let

$\mathcal{S}=\left\{1+2 t-2 t^{2}, 1+t-2 t^{2},-3+3 t^{2}\right\} \equiv\left\{p_{1}(t), p_{2}(t), p_{3}(t)\right\} \subseteq P_{2}$
Is $\mathcal{S}$ a basis for $P_{2}$ ? If so, what is the dimension of $P_{2}$ ?
Let $\quad A=\left[\begin{array}{ccc}\mid & \mid & \mid \\ p_{1}(t) & p_{2}(t) & p_{3}(t) \\ \mid & \mid & \mid\end{array}\right]=\left[\begin{array}{rrr}1 & 1 & -3 \\ 2 & 1 & 0 \\ -2 & -2 & 3\end{array}\right]$.
Then: $\quad A=\left[\begin{array}{rrr}1 & 1 & -3 \\ 2 & 1 & 0 \\ -2 & -2 & 3\end{array}\right] \xrightarrow{\text { Gauss }- \text { Jordan }}\left[\begin{array}{ccc}\hline 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\operatorname{RREF}(A)$

## Basis (Example)

WEX 4-5-4: Let
$\mathcal{S}=\left\{1+2 t-2 t^{2}, 1+t-2 t^{2},-3+3 t^{2}\right\} \equiv\left\{p_{1}(t), p_{2}(t), p_{3}(t)\right\} \subseteq P_{2}$
Is $\mathcal{S}$ a basis for $P_{2}$ ? If so, what is the dimension of $P_{2}$ ?
Let $\quad A=\left[\begin{array}{ccc}\mid & \mid & \mid \\ p_{1}(t) & p_{2}(t) & p_{3}(t) \\ \mid & \mid & \mid\end{array}\right]=\left[\begin{array}{rrr}1 & 1 & -3 \\ 2 & 1 & 0 \\ -2 & -2 & 3\end{array}\right]$.
Then: $\quad A=\left[\begin{array}{rrr}1 & 1 & -3 \\ 2 & 1 & 0 \\ -2 & -2 & 3\end{array}\right] \xrightarrow{\text { Gauss-Jordan }}\left[\begin{array}{ccc}\hline 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\operatorname{RREF}(A)$
Every row of RREF $(A)$ contains a pivot $\Longrightarrow \mathcal{S}$ spans $P_{2}$
Every column of $\operatorname{RREF}(A)$ contains a pivot $\Longrightarrow \mathcal{S}$ is linearly independent

## Basis (Example)

WEX 4-5-4: Let
$\mathcal{S}=\left\{1+2 t-2 t^{2}, 1+t-2 t^{2},-3+3 t^{2}\right\} \equiv\left\{p_{1}(t), p_{2}(t), p_{3}(t)\right\} \subseteq P_{2}$ Is $\mathcal{S}$ a basis for $P_{2}$ ? If so, what is the dimension of $P_{2}$ ?

Let $\quad A=\left[\begin{array}{ccc}\mid & \mid & \mid \\ p_{1}(t) & p_{2}(t) & p_{3}(t) \\ \mid & \mid & \mid\end{array}\right]=\left[\begin{array}{rrr}1 & 1 & -3 \\ 2 & 1 & 0 \\ -2 & -2 & 3\end{array}\right]$.
Then: $\quad A=\left[\begin{array}{rrr}1 & 1 & -3 \\ 2 & 1 & 0 \\ -2 & -2 & 3\end{array}\right] \xrightarrow{\text { Gauss-Jordan }}\left[\begin{array}{ccc}\boxed{1} & 0 & 0 \\ 0 & \boxed{1} & 0 \\ 0 & 0 & 1\end{array}\right]=\operatorname{RREF}(A)$
Every row of $\operatorname{RREF}(A)$ contains a pivot $\Longrightarrow \mathcal{S}$ spans $P_{2}$
Every column of $\operatorname{RREF}(A)$ contains a pivot $\Longrightarrow \mathcal{S}$ is linearly independent Since $\mathcal{S}$ spans $P_{2}$ and $\mathcal{S}$ is linearly independent, $\mathcal{S}$ is a basis for $P_{2}$ $\operatorname{dim}\left(P_{2}\right)=(\#$ of basis vectors in $\mathcal{S})=3$

## Finite \& Infinite Dimensional Vector Spaces

It's possible for a vector space to have infinitely many basis vectors:

## Definition

(Finite \& Infinite Dimensional Vector Spaces)
Let $\mathcal{B}$ be a basis for vector space $V$. Then:
$V$ is finite dimensional if basis $\mathcal{B}$ contains a finite \# of basis vectors.
$V$ is infinite dimensional if basis $\mathcal{B}$ contains an infinite \# of basis vectors.
Vector spaces $\mathbb{R}, \mathbb{R}^{n}, \mathbb{R}^{m \times n}, P_{n}$ are each finite dimensional.
Infinite dimensional vector spaces are beyond the scope of this chapter:

$$
\begin{aligned}
C[a, b] & \equiv \text { Vector space of continuous functions } \\
C^{[ }[a, b] & \equiv \text { Vector space of differentiable functions } \\
C^{2}[a, b] & \equiv \text { Vector space of twice-differentiable functions } \\
P & \equiv \text { Vector Space of all polynomials }
\end{aligned}
$$

Infinite dimensional vector spaces will be seen occasionally in Chapters 5 \& 6 .
They also show up in Differential Equations \& Numerical Analysis.

## Standard Basis for common Vector Spaces

Many vector spaces have a "intuitive" basis, called the standard basis:

| VECTOR SPACE | STANDARD BASIS | DIM. |
| :---: | :---: | :---: |
| $\mathbb{R}$ | $\mathcal{E}=\{1\}$ | 1 |
| $\mathbb{R}^{2}$ | $\mathcal{E}=\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$ | 2 |
| $\mathbb{R}^{3}$ | $\mathcal{E}=\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$ | 3 |
| $\mathbb{R}^{2 \times 2}$ | $\mathcal{E}=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$ | 4 |
| $\mathbb{R}^{2 \times 3}$ | $\mathcal{E}=\left\{\begin{array}{l}{\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]} \\ {\left[\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]}\end{array}\right\}$ | 6 |
| $\begin{aligned} & P_{1} \\ & P_{2} \\ & P_{3} \end{aligned}$ | $\begin{gathered} \mathcal{E}=\{1, t\} \\ \mathcal{E}=\left\{1, t, t^{2}\right\} \\ \mathcal{E}=\left\{1, t, t^{2}, t^{3}\right\} \end{gathered}$ | $\begin{aligned} & 2 \\ & 3 \\ & 4 \end{aligned}$ |

## Why the Standard Basis is "Intuitive"

NOTATION: A standard basis is denoted by $\mathcal{E}=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{k}\right\}$, where $\mathbf{e}_{j}$ is the $j^{\text {th }}$ standard basis vector.
The coefficients in the linear combination are simply the entries of the vector:

- $x_{1}=x_{1}(1)=x_{1} \mathbf{e}_{1}$
- $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=x_{1}\left[\begin{array}{l}1 \\ 0\end{array}\right]+x_{2}\left[\begin{array}{l}0 \\ 1\end{array}\right]=x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}$
- $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=x_{1}\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]+x_{2}\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]+x_{3}\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]=x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}+x_{3} \mathbf{e}_{3}$
- $\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]=a_{11} \underbrace{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]}_{\mathbf{e}_{1}}+a_{12} \underbrace{\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]}_{\mathbf{e}_{2}}+a_{21} \underbrace{\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]}_{\mathbf{e}_{3}}+a_{22} \underbrace{\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]}_{\mathbf{e}_{4}}$
- $a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}=a_{0}(1)+a_{1}(t)+a_{2}\left(t^{2}\right)+a_{3}\left(t^{3}\right)$

$$
=a_{0} \mathbf{e}_{1}+a_{1} \mathbf{e}_{2}+a_{2} \mathbf{e}_{3}+a_{3} \mathbf{e}_{4}
$$

## Finding a Basis for a Subspace Spanned by a Set

Sometimes it's necessary to find a basis for a subspace spanned by a set:

## Proposition

(Finding a Basis for a Subspace Spanned by a Set)
TASK: Find a basis $\mathcal{B}$ for the subspace spanned by $\mathcal{S}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$.
(1) Form matrix $A$ with $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}$ as its columns: $A=$ $\left[\begin{array}{cccc}\mid & \mid & & \mid \\ \mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{k} \\ \mid & \mid & & \mid\end{array}\right]$
(2) Perform Gauss-Jordan Elimination on matrix A: $A \xrightarrow{\text { Gauss-Jordan }} \operatorname{RREF}(A)$
(3) Basis $\mathcal{B}=\{$ pivot columns of $A\}$

NOTE: For polynomials, form each column of matrix A using the coefficients of each polynomial.

## Finding a Basis for a Subspace Spanned by a Set

WEX 4-5-5: Let $\mathcal{S}=\left\{\left[\begin{array}{l}1 \\ 4 \\ 1\end{array}\right],\left[\begin{array}{r}2 \\ 2 \\ -1\end{array}\right],\left[\begin{array}{r}-2 \\ -4 \\ 0\end{array}\right],\left[\begin{array}{r}1 \\ -2 \\ 0\end{array}\right],\left[\begin{array}{r}-2 \\ -2 \\ 1\end{array}\right]\right\}$
(a) Find a basis $\mathcal{B}$ for the subspace spanned by $\mathcal{S}$. (b) Find $\operatorname{dim}(\operatorname{span}\{\mathcal{S}\})$.

## Finding a Basis for a Subspace Spanned by a Set

WEX 4-5-5: Let $\mathcal{S}=\left\{\left[\begin{array}{l}1 \\ 4 \\ 1\end{array}\right],\left[\begin{array}{r}2 \\ 2 \\ -1\end{array}\right],\left[\begin{array}{r}-2 \\ -4 \\ 0\end{array}\right],\left[\begin{array}{r}1 \\ -2 \\ 0\end{array}\right],\left[\begin{array}{r}-2 \\ -2 \\ 1\end{array}\right]\right\}$
(a) Find a basis $\mathcal{B}$ for the subspace spanned by $\mathcal{S}$. (b) Find $\operatorname{dim}(\operatorname{span}\{\mathcal{S}\})$.

Let $A=\left[\begin{array}{ccccc}\mid & \mid & \mid & \mid & \mid \\ \mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3} & \mathbf{v}_{4} & \mathbf{v}_{5} \\ \mid & \mid & \mid & \mid & \mid\end{array}\right]=\left[\begin{array}{rrrrr}1 & 2 & -2 & 1 & -2 \\ 4 & 2 & -4 & -2 & -2 \\ 1 & -1 & 0 & 0 & 1\end{array}\right]$. Then:
$A=\left[\begin{array}{rrrrr}1 & 2 & -2 & 1 & -2 \\ 4 & 2 & -4 & -2 & -2 \\ 1 & -1 & 0 & 0 & 1\end{array}\right] \xrightarrow{\text { Gauss-Jordan }} \underbrace{\left[\begin{array}{ccccc}\boxed{1} & 0 & -2 / 3 & 0 & 0 \\ 0 & \boxed{1} & -2 / 3 & 0 & -1 \\ 0 & 0 & 0 & \boxed{1} & 0\end{array}\right]}_{\operatorname{RREF}(A)}$

## Finding a Basis for a Subspace Spanned by a Set

WEX 4-5-5: Let $\mathcal{S}=\left\{\left[\begin{array}{l}1 \\ 4 \\ 1\end{array}\right],\left[\begin{array}{r}2 \\ 2 \\ -1\end{array}\right],\left[\begin{array}{r}-2 \\ -4 \\ 0\end{array}\right],\left[\begin{array}{r}1 \\ -2 \\ 0\end{array}\right],\left[\begin{array}{r}-2 \\ -2 \\ 1\end{array}\right]\right\}$
(a) Find a basis $\mathcal{B}$ for the subspace spanned by $\mathcal{S}$. (b) Find $\operatorname{dim}(\operatorname{span}\{\mathcal{S}\})$.

Let $A=\left[\begin{array}{ccccc}\mid & \mid & \mid & \mid & \mid \\ \mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3} & \mathbf{v}_{4} & \mathbf{v}_{5} \\ \mid & \mid & \mid & \mid & \mid\end{array}\right]=\left[\begin{array}{rrrrr}1 & 2 & -2 & 1 & -2 \\ 4 & 2 & -4 & -2 & -2 \\ 1 & -1 & 0 & 0 & 1\end{array}\right]$. Then:
$A=\left[\begin{array}{rrrrr}1 & 2 & -2 & 1 & -2 \\ 4 & 2 & -4 & -2 & -2 \\ 1 & -1 & 0 & 0 & 1\end{array}\right] \xrightarrow{\text { Gauss-Jordan }} \underbrace{\left[\begin{array}{ccccc}\boxed{1} & 0 & -2 / 3 & 0 & 0 \\ 0 & \boxed{1} & -2 / 3 & 0 & -1 \\ 0 & 0 & 0 & \boxed{1} & 0\end{array}\right]}_{\operatorname{RREF}(A)}$
(a) $\mathcal{B}=\{$ pivot columns of $A\}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{4}\right\}=\left\{\left[\begin{array}{l}1 \\ 4 \\ 1\end{array}\right],\left[\begin{array}{r}2 \\ 2 \\ -1\end{array}\right],\left[\begin{array}{r}1 \\ -2 \\ 0\end{array}\right]\right\}$
(b) $\operatorname{dim}(\operatorname{span}\{\mathcal{S}\})=(\#$ basis vectors in $\mathcal{B})=3$

## Finding a Basis for a Subspace with Parameters

Sometimes it's necessary to find a basis for a subspace written in terms of parameters:

## Proposition

(Finding a Basis for a Subspace written as one vector of several parameters)
TASK: Find a basis $\mathcal{B}$ for subspace spanned by $W=\left\{\mathbf{w}_{1}: s, t, \ldots \in \mathbb{R}\right\}$.
(1) "Undo" any vector addition by writing $\mathbf{w}_{1}$ as a sum of vectors, each of which has its own parameter.
(2) "Undo" any scalar multiplication by factoring out each parameter from each vector.
(3) The resulting set of vectors span $W$.
(4) Apply the previous procedure to this set of vectors to remove any linearly dependent vectors.

## Finding a Basis for a Subspace with Parameters

WEX 4-5-6: Let $W=\left\{\left[\begin{array}{c}r-s \\ s+4 t \\ r+s+t \\ 3 r-t\end{array}\right]: r, s, t \in \mathbb{R}\right\}$ be a subspace of $\mathbb{R}^{4}$.
(a) Find a basis $\mathcal{B}$ for $W$
(b) Find $\operatorname{dim}(W)$

## Finding a Basis for a Subspace with Parameters

WEX 4-5-6: Let $W=\left\{\left[\begin{array}{c}r-s \\ s+4 t \\ r+s+t \\ 3 r-t\end{array}\right]: r, s, t \in \mathbb{R}\right\}$ be a subspace of $\mathbb{R}^{4}$.
(a) Find a basis $\mathcal{B}$ for $W$
(b) Find $\operatorname{dim}(W)$

$$
\begin{aligned}
{\left[\begin{array}{c}
r-s \\
s+4 t \\
r+s+t \\
3 r-t
\end{array}\right] } & =\left[\begin{array}{c}
r \\
0 \\
r \\
3 r
\end{array}\right]+\left[\begin{array}{r}
-s \\
s \\
s \\
0
\end{array}\right]+\left[\begin{array}{r}
0 \\
4 t \\
t \\
-t
\end{array}\right] \quad \text { (Undo Vector Addition) } \\
& =r\left[\begin{array}{l}
1 \\
0 \\
1 \\
3
\end{array}\right]+s\left[\begin{array}{r}
-1 \\
1 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{r}
0 \\
4 \\
1 \\
-1
\end{array}\right] \quad \text { (Undo Scalar Mult.) }
\end{aligned}
$$

## Finding a Basis for a Subspace with Parameters

WEX 4-5-6: Let $W=\left\{\left[\begin{array}{c}r-s \\ s+4 t \\ r+s+t \\ 3 r-t\end{array}\right]: r, s, t \in \mathbb{R}\right\}$ be a subspace of $\mathbb{R}^{4}$.
(a) Find a basis $\mathcal{B}$ for $W$
(b) Find $\operatorname{dim}(W)$
$\therefore W=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 3\end{array}\right],\left[\begin{array}{r}-1 \\ 1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{r}0 \\ 4 \\ 1 \\ -1\end{array}\right]\right\} \equiv \operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$
$A=\left[\begin{array}{ccc}\mid & \mid & \mid \\ \mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3} \\ \mid & \mid & \mid\end{array}\right]=\left[\begin{array}{rrr}1 & -1 & 0 \\ 0 & 1 & 4 \\ 1 & 1 & 1 \\ 3 & 0 & -1\end{array}\right] \xrightarrow{\text { Gauss-Jordan }} \underbrace{\left[\begin{array}{ccc}\boxed{1} & 0 & 0 \\ 0 & \boxed{1} & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]}_{\operatorname{RREF}(A)}$
Every column of $\operatorname{RREF}(A)$ has a pivot $\Longrightarrow \mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly independent.
$\therefore \mathcal{B}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is a basis for $W$.

## Finding a Basis for a Subspace with Parameters

WEX 4-5-6: Let $W=\left\{\left[\begin{array}{c}r-s \\ s+4 t \\ r+s+t \\ 3 r-t\end{array}\right]: r, s, t \in \mathbb{R}\right\}$ be a subspace of $\mathbb{R}^{4}$.
(a) Find a basis $\mathcal{B}$ for $W$
(b) Find $\operatorname{dim}(W)$
$\left[\begin{array}{c}r-s \\ s+4 t \\ r+s+t \\ 3 r-t\end{array}\right]=r\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 3\end{array}\right]+s\left[\begin{array}{r}-1 \\ 1 \\ 1 \\ 0\end{array}\right]+t\left[\begin{array}{r}0 \\ 4 \\ 1 \\ -1\end{array}\right]$
(a) $\mathcal{B}=\left\{\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 3\end{array}\right],\left[\begin{array}{r}-1 \\ 1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{r}0 \\ 4 \\ 1 \\ -1\end{array}\right]\right\}$ is a basis for $W$
(b) $\operatorname{dim}(W)=(\#$ basis vectors in $\mathcal{B})=3 \Longrightarrow \operatorname{dim}(W)=3$

## Fin.

