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Basis for a Vector Space

Definition
(Basis of a Vector Space)

Let V be a vector space and S = {v1, v2, . . . , vk} ⊆ V
Then S is a basis for V if:

S spans V AND S is linearly independent

Moreover, each vector in a basis is called a basis vector.

Definition
(Dimension of a Vector Space)

Let B = {v1, v2, . . . , vk} be a basis for vector space V.
Then the dimension of V is the # of basis vectors in B: dim(V) = k

Let vector space Z contain only the zero vector. Then dim(Z) := 0
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Basis (Example)

WEX 4-5-1: Let S =


 0
−4

2

 ,

 2
−3

2

 ≡ {v1, v2} ⊆ R3

Is S a basis for R3? If so, what is the dimension of R3?
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Basis (Example)

WEX 4-5-1: Let S =


 0
−4

2

 ,

 2
−3

2

 ≡ {v1, v2} ⊆ R3

Is S a basis for R3? If so, what is the dimension of R3?

Let A =

 | |
v1 v2
| |

 =

 0 2
−4 −3

2 2

.

Then: A =

 0 2
−4 −3

2 2

 Gauss−Jordan−−−−−−−−→

 1 0
0 1
0 0

 = RREF(A)
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Basis (Example)

WEX 4-5-1: Let S =


 0
−4

2

 ,

 2
−3

2

 ≡ {v1, v2} ⊆ R3

Is S a basis for R3? If so, what is the dimension of R3?

Let A =

 | |
v1 v2
| |

 =

 0 2
−4 −3

2 2

.

Then: A =

 0 2
−4 −3

2 2

 Gauss−Jordan−−−−−−−−→

 1 0
0 1
0 0

 = RREF(A)

RREF(A) contains a row of zeros =⇒ S does not span R3

Every column of RREF(A) contains a pivot =⇒ S is linearly independent
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Basis (Example)

WEX 4-5-1: Let S =


 0
−4

2

 ,

 2
−3

2

 ≡ {v1, v2} ⊆ R3

Is S a basis for R3? If so, what is the dimension of R3?

Let A =

 | |
v1 v2
| |

 =

 0 2
−4 −3

2 2

.

Then: A =

 0 2
−4 −3

2 2

 Gauss−Jordan−−−−−−−−→

 1 0
0 1
0 0

 = RREF(A)

RREF(A) contains a row of zeros =⇒ S does not span R3

Every column of RREF(A) contains a pivot =⇒ S is linearly independent

Since S is does not span R3, S is not a basis for R3
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Basis (Example)

WEX 4-5-2: Let S =

{
1 + 4t + t2, 2 + 2t − t2,

−2− 4t, 1− 2t,−2− 2t + t2

}
≡ {p1, p2, p3, p4, p5}

Is S a basis for P2? If so, what is the dimension of P2?
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Basis (Example)

WEX 4-5-2: Let S =

{
1 + 4t + t2, 2 + 2t − t2,

−2− 4t, 1− 2t,−2− 2t + t2

}
≡ {p1, p2, p3, p4, p5}

Is S a basis for P2? If so, what is the dimension of P2?

Let A =

 | | | | |
p1(t) p2(t) p3(t) p4(t) p5(t)
| | | | |

 =

 1 2 −2 1 −2
4 2 −4 −2 −2
1 −1 0 0 1

.

Then:

A =

 1 2 −2 1 −2
4 2 −4 −2 −2
1 −1 0 0 1

 Gauss−Jordan−−−−−−−−→

 1 0 −2/3 0 0
0 1 −2/3 0 −1
0 0 0 1 0


︸ ︷︷ ︸

RREF(A)
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Basis (Example)

WEX 4-5-2: Let S =

{
1 + 4t + t2, 2 + 2t − t2,

−2− 4t, 1− 2t,−2− 2t + t2

}
≡ {p1, p2, p3, p4, p5}

Is S a basis for P2? If so, what is the dimension of P2?

Let A =

 | | | | |
p1(t) p2(t) p3(t) p4(t) p5(t)
| | | | |

 =

 1 2 −2 1 −2
4 2 −4 −2 −2
1 −1 0 0 1

.

Then:

A =

 1 2 −2 1 −2
4 2 −4 −2 −2
1 −1 0 0 1

 Gauss−Jordan−−−−−−−−→

 1 0 −2/3 0 0
0 1 −2/3 0 −1
0 0 0 1 0


︸ ︷︷ ︸

RREF(A)

Every row of RREF(A) contains a pivot =⇒ S spans P2

Columns 3 & 5 of RREF(A) contain no pivot =⇒ S is linearly dependent
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Basis (Example)

WEX 4-5-2: Let S =

{
1 + 4t + t2, 2 + 2t − t2,

−2− 4t, 1− 2t,−2− 2t + t2

}
≡ {p1, p2, p3, p4, p5}

Is S a basis for P2? If so, what is the dimension of P2?

Let A =

 | | | | |
p1(t) p2(t) p3(t) p4(t) p5(t)
| | | | |

 =

 1 2 −2 1 −2
4 2 −4 −2 −2
1 −1 0 0 1

.

Then:

A =

 1 2 −2 1 −2
4 2 −4 −2 −2
1 −1 0 0 1

 Gauss−Jordan−−−−−−−−→

 1 0 −2/3 0 0
0 1 −2/3 0 −1
0 0 0 1 0


︸ ︷︷ ︸

RREF(A)

Every row of RREF(A) contains a pivot =⇒ S spans P2

Columns 3 & 5 of RREF(A) contain no pivot =⇒ S is linearly dependent

Since S is not linearly independent, S is not a basis for P2
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Basis (Example)

WEX 4-5-3: Let S =


 4

0
3

 ,

 −3
−1

4

 ,

 3
4
1

 ≡ {v1, v2, v3} ⊆ R3

Is S a basis for R3? If so, what is the dimension of R3?
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Basis (Example)

WEX 4-5-3: Let S =


 4

0
3

 ,

 −3
−1

4

 ,

 3
4
1

 ≡ {v1, v2, v3} ⊆ R3

Is S a basis for R3? If so, what is the dimension of R3?

Let A =

 | | |
v1 v2 v3
| | |

 =

 4 −3 3
0 −1 4
3 4 1

.

Then: A =

 4 −3 3
0 −1 4
3 4 1

 Gauss−Jordan−−−−−−−−→

 1 0 0
0 1 0
0 0 1

 = RREF(A)
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Basis (Example)

WEX 4-5-3: Let S =


 4

0
3

 ,

 −3
−1

4

 ,

 3
4
1

 ≡ {v1, v2, v3} ⊆ R3

Is S a basis for R3? If so, what is the dimension of R3?

Let A =

 | | |
v1 v2 v3
| | |

 =

 4 −3 3
0 −1 4
3 4 1

.

Then: A =

 4 −3 3
0 −1 4
3 4 1

 Gauss−Jordan−−−−−−−−→

 1 0 0
0 1 0
0 0 1

 = RREF(A)

Every row of RREF(A) contains a pivot =⇒ S spans R3

Every column of RREF(A) contains a pivot =⇒ S is linearly independent
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Basis (Example)

WEX 4-5-3: Let S =


 4

0
3

 ,

 −3
−1

4

 ,

 3
4
1

 ≡ {v1, v2, v3} ⊆ R3

Is S a basis for R3? If so, what is the dimension of R3?

Let A =

 | | |
v1 v2 v3
| | |

 =

 4 −3 3
0 −1 4
3 4 1

.

Then: A =

 4 −3 3
0 −1 4
3 4 1

 Gauss−Jordan−−−−−−−−→

 1 0 0
0 1 0
0 0 1

 = RREF(A)

Every row of RREF(A) contains a pivot =⇒ S spans R3

Every column of RREF(A) contains a pivot =⇒ S is linearly independent

Since S spans R3 and S is linearly independent, S is a basis for R3

dim(R3) = (# of basis vectors in S) = 3
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Basis (Example)

WEX 4-5-4: Let
S = {1 + 2t − 2t2, 1 + t − 2t2,−3 + 3t2} ≡ {p1(t), p2(t), p3(t)} ⊆ P2

Is S a basis for P2? If so, what is the dimension of P2?
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Basis (Example)

WEX 4-5-4: Let
S = {1 + 2t − 2t2, 1 + t − 2t2,−3 + 3t2} ≡ {p1(t), p2(t), p3(t)} ⊆ P2

Is S a basis for P2? If so, what is the dimension of P2?

Let A =

 | | |
p1(t) p2(t) p3(t)
| | |

 =

 1 1 −3
2 1 0
−2 −2 3

.

Then: A =

 1 1 −3
2 1 0
−2 −2 3

 Gauss−Jordan−−−−−−−−→

 1 0 0
0 1 0
0 0 1

 = RREF(A)
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Basis (Example)

WEX 4-5-4: Let
S = {1 + 2t − 2t2, 1 + t − 2t2,−3 + 3t2} ≡ {p1(t), p2(t), p3(t)} ⊆ P2

Is S a basis for P2? If so, what is the dimension of P2?

Let A =

 | | |
p1(t) p2(t) p3(t)
| | |

 =

 1 1 −3
2 1 0
−2 −2 3

.

Then: A =

 1 1 −3
2 1 0
−2 −2 3

 Gauss−Jordan−−−−−−−−→

 1 0 0
0 1 0
0 0 1

 = RREF(A)

Every row of RREF(A) contains a pivot =⇒ S spans P2

Every column of RREF(A) contains a pivot =⇒ S is linearly independent
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Basis (Example)

WEX 4-5-4: Let
S = {1 + 2t − 2t2, 1 + t − 2t2,−3 + 3t2} ≡ {p1(t), p2(t), p3(t)} ⊆ P2

Is S a basis for P2? If so, what is the dimension of P2?

Let A =

 | | |
p1(t) p2(t) p3(t)
| | |

 =

 1 1 −3
2 1 0
−2 −2 3

.

Then: A =

 1 1 −3
2 1 0
−2 −2 3

 Gauss−Jordan−−−−−−−−→

 1 0 0
0 1 0
0 0 1

 = RREF(A)

Every row of RREF(A) contains a pivot =⇒ S spans P2

Every column of RREF(A) contains a pivot =⇒ S is linearly independent

Since S spans P2 and S is linearly independent, S is a basis for P2

dim(P2) = (# of basis vectors in S) = 3
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Finite & Infinite Dimensional Vector Spaces

It’s possible for a vector space to have infinitely many basis vectors:

Definition
(Finite & Infinite Dimensional Vector Spaces)

Let B be a basis for vector space V. Then:

V is finite dimensional if basis B contains a finite # of basis vectors.
V is infinite dimensional if basis B contains an infinite # of basis vectors.

Vector spaces R,Rn,Rm×n,Pn are each finite dimensional.

Infinite dimensional vector spaces are beyond the scope of this chapter:

C[a, b] ≡ Vector space of continuous functions
C1[a, b] ≡ Vector space of differentiable functions
C2[a, b] ≡ Vector space of twice-differentiable functions

P ≡ Vector Space of all polynomials
Infinite dimensional vector spaces will be seen occasionally in Chapters 5 & 6.

They also show up in Differential Equations & Numerical Analysis.
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Standard Basis for common Vector Spaces

Many vector spaces have a ”intuitive” basis, called the standard basis:
VECTOR SPACE STANDARD BASIS DIM.

R E = {1} 1

R2 E =

{[
1
0

]
,

[
0
1

]}
2

R3 E =


 1

0
0

 ,

 0
1
0

 ,

 0
0
1

 3

R2×2 E =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
4

R2×3 E =



[
1 0 0
0 0 0

]
,

[
0 1 0
0 0 0

]
,

[
0 0 1
0 0 0

]
[

0 0 0
1 0 0

]
,

[
0 0 0
0 1 0

]
,

[
0 0 0
0 0 1

]
 6

P1 E = {1, t} 2
P2 E = {1, t, t2} 3
P3 E = {1, t, t2, t3} 4
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Why the Standard Basis is ”Intuitive”

NOTATION: A standard basis is denoted by E = {e1, e2, . . . , ek}, where ej is
the jth standard basis vector.

The coefficients in the linear combination are simply the entries of the vector:

x1 = x1(1) = x1e1[
x1
x2

]
= x1

[
1
0

]
+ x2

[
0
1

]
= x1e1 + x2e2 x1

x2
x3

 = x1

 1
0
0

+ x2

 0
1
0

+ x3

 0
0
1

 = x1e1 + x2e2 + x3e3

[
a11 a12
a21 a22

]
= a11

[
1 0
0 0

]
︸ ︷︷ ︸

e1

+a12

[
0 1
0 0

]
︸ ︷︷ ︸

e2

+a21

[
0 0
1 0

]
︸ ︷︷ ︸

e3

+a22

[
0 0
0 1

]
︸ ︷︷ ︸

e4

a0 + a1t + a2t2 + a3t3 = a0(1) + a1(t) + a2(t2) + a3(t3)
= a0e1 + a1e2 + a2e3 + a3e4
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Finding a Basis for a Subspace Spanned by a Set

Sometimes it’s necessary to find a basis for a subspace spanned by a set:

Proposition
(Finding a Basis for a Subspace Spanned by a Set)

TASK: Find a basis B for the subspace spanned by S = {v1, v2, . . . , vk}.

(1) Form matrix A with v1, v2, · · · , vk as its columns: A =

 | | |
v1 v2 · · · vk

| | |


(2) Perform Gauss-Jordan Elimination on matrix A: A Gauss−Jordan−−−−−−−−→ RREF(A)

(3) Basis B = {pivot columns of A}

NOTE: For polynomials, form each column of matrix A using the
coefficients of each polynomial.
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Finding a Basis for a Subspace Spanned by a Set

WEX 4-5-5: Let S =


 1

4
1

 ,

 2
2
−1

 ,

 −2
−4

0

 ,

 1
−2

0

 ,

 −2
−2

1


(a) Find a basis B for the subspace spanned by S. (b) Find dim(span{S}).

Josh Engwer (TTU) Vector Spaces: Basis & Dimension 09 October 2015 23 / 31



Finding a Basis for a Subspace Spanned by a Set

WEX 4-5-5: Let S =


 1

4
1

 ,

 2
2
−1

 ,

 −2
−4

0

 ,

 1
−2

0

 ,

 −2
−2

1


(a) Find a basis B for the subspace spanned by S. (b) Find dim(span{S}).

Let A =

 | | | | |
v1 v2 v3 v4 v5
| | | | |

 =

 1 2 −2 1 −2
4 2 −4 −2 −2
1 −1 0 0 1

. Then:

A =

 1 2 −2 1 −2
4 2 −4 −2 −2
1 −1 0 0 1

 Gauss−Jordan−−−−−−−−→

 1 0 −2/3 0 0
0 1 −2/3 0 −1
0 0 0 1 0


︸ ︷︷ ︸

RREF(A)
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Finding a Basis for a Subspace Spanned by a Set

WEX 4-5-5: Let S =


 1

4
1

 ,

 2
2
−1

 ,

 −2
−4

0

 ,

 1
−2

0

 ,

 −2
−2

1


(a) Find a basis B for the subspace spanned by S. (b) Find dim(span{S}).

Let A =

 | | | | |
v1 v2 v3 v4 v5
| | | | |

 =

 1 2 −2 1 −2
4 2 −4 −2 −2
1 −1 0 0 1

. Then:

A =

 1 2 −2 1 −2
4 2 −4 −2 −2
1 −1 0 0 1

 Gauss−Jordan−−−−−−−−→

 1 0 −2/3 0 0
0 1 −2/3 0 −1
0 0 0 1 0


︸ ︷︷ ︸

RREF(A)

(a) B = {pivot columns of A} = {v1, v2, v4} =


 1

4
1

 ,

 2
2
−1

 ,

 1
−2

0


(b) dim(span{S}) = (# basis vectors in B) = 3
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Finding a Basis for a Subspace with Parameters

Sometimes it’s necessary to find a basis for a subspace written in terms of
parameters:

Proposition
(Finding a Basis for a Subspace written as one vector of several parameters)

TASK: Find a basis B for subspace spanned by W = {w1 : s, t, ... ∈ R}.
(1) ”Undo” any vector addition by writing w1 as a sum of vectors, each of
which has its own parameter.

(2) ”Undo” any scalar multiplication by factoring out each parameter from
each vector.

(3) The resulting set of vectors span W.

(4) Apply the previous procedure to this set of vectors to remove any linearly
dependent vectors.
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Finding a Basis for a Subspace with Parameters

WEX 4-5-6: Let W =




r − s
s + 4t

r + s + t
3r − t

 : r, s, t ∈ R

 be a subspace of R4.

(a) Find a basis B for W (b) Find dim(W)
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Finding a Basis for a Subspace with Parameters

WEX 4-5-6: Let W =




r − s
s + 4t

r + s + t
3r − t

 : r, s, t ∈ R

 be a subspace of R4.

(a) Find a basis B for W (b) Find dim(W)
r − s
s + 4t

r + s + t
3r − t

 =


r
0
r

3r

+


−s

s
s
0

+


0

4t
t
−t

 (Undo Vector Addition)

= r


1
0
1
3

+ s


−1

1
1
0

+ t


0
4
1
−1

 (Undo Scalar Mult.)
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Finding a Basis for a Subspace with Parameters

WEX 4-5-6: Let W =




r − s
s + 4t

r + s + t
3r − t

 : r, s, t ∈ R

 be a subspace of R4.

(a) Find a basis B for W (b) Find dim(W)

∴ W = span




1
0
1
3

 ,


−1

1
1
0

 ,


0
4
1
−1


 ≡ span{v1, v2, v3}

A =

 | | |
v1 v2 v3
| | |

 =


1 −1 0
0 1 4
1 1 1
3 0 −1

 Gauss−Jordan−−−−−−−−→


1 0 0
0 1 0
0 0 1
0 0 0


︸ ︷︷ ︸

RREF(A)

Every column of RREF(A) has a pivot =⇒ v1, v2, v3 are linearly independent.
∴ B = {v1, v2, v3} is a basis for W.
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Finding a Basis for a Subspace with Parameters

WEX 4-5-6: Let W =




r − s
s + 4t

r + s + t
3r − t

 : r, s, t ∈ R

 be a subspace of R4.

(a) Find a basis B for W (b) Find dim(W)
r − s
s + 4t

r + s + t
3r − t

 = r


1
0
1
3

+ s


−1

1
1
0

+ t


0
4
1
−1



(a) B =




1
0
1
3

 ,


−1

1
1
0

 ,


0
4
1
−1


 is a basis for W

(b) dim(W) = (# basis vectors in B) = 3 =⇒ dim(W) = 3
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Fin

Fin.
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