Row Space, Column Space, Null Space, Rank Linear Algebra

Josh Engwer

TTU
12 October 2015

PART I:

ROW SPACE OF A MATRIX COLUMN SPACE OF A MATRIX RANK OF A MATRIX

Row Space \& Column Space of a Matrix (Definition)

Definition

(Row Space \& Column Space of a Matrix)
Let $A \in \mathbb{R}^{m \times n}$ be an $m \times n$ matrix. Then:

- The row space of A is the subspace of \mathbb{R}^{n} spanned by the rows of A :

$$
\operatorname{RowSp}(A):=\operatorname{span}\{\text { rows of } A\} \subseteq \mathbb{R}^{n}
$$

- Why \mathbb{R}^{n} ? Because each row of A has n entries.
- The column space of A is the subspace of \mathbb{R}^{m} spanned by columns of A : $\operatorname{CoISp}(A):=\operatorname{span}\{$ columns of $A\} \subseteq \mathbb{R}^{m}$
- Why \mathbb{R}^{m} ? Because each column of A has m entries.

Finding Bases for the Row Space \& Column Space

Proposition

(Finding Bases for the Row Space \& Column Space)
TASK: Find bases for RowSp($A)$ \& $\operatorname{CoISp}(A)$ where matrix $A \in \mathbb{R}^{m \times n}$.
(1) Perform Gauss-Jordan Elimination on matrix A.
(\star) The pivot rows of $\operatorname{RREF}(A)$ form a basis for RowSp(A).
(\star) The pivot columns of A form a basis for $\mathrm{ColSp}(A)$.
WARNING \#1: In general, $\operatorname{RowSp}(A) \neq \operatorname{span}\{$ pivot rows of $A\}$.
This may happen if row swaps are performed for Gauss-Jordan:
If $A=\left[\begin{array}{ll}0 & 0 \\ 2 & 4\end{array}\right] \sim\left[\begin{array}{ll}2 & 4 \\ 0 & 0\end{array}\right] \sim\left[\begin{array}{cc}1 & 2 \\ 0 & 0\end{array}\right]=\operatorname{RREF}(A) \quad$ Then:
$\operatorname{RowSp}(A)=\operatorname{span}\{(1,2)\} \neq \operatorname{span}\{(0,0)\}=\operatorname{span}\{$ pivot rows of $A\}:$
$(4,8)=4(1,2) \in \operatorname{RowSp}(A)$,
$(4,8) \neq k(0,0) \Longrightarrow(4,8) \notin \operatorname{span}\{$ pivot rows of $A\}$

Finding Bases for the Row Space \& Column Space

Proposition

(Finding Bases for the Row Space \& Column Space) TASK: Find bases for RowSp(A) \& $\operatorname{ColSp}(A)$ where matrix $A \in \mathbb{R}^{m \times n}$.
(1) Perform Gauss-Jordan Elimination on matrix A.
(\star) The pivot rows of $\operatorname{RREF}(A)$ form a basis for $\operatorname{RowSp}(A)$.
(\star) The pivot columns of A form a basis for $\mathrm{CoISp}(A)$.
WARNING \#2: In general, $\operatorname{ColSp}(A) \neq \operatorname{ColSp}[\operatorname{RREF}(A)]$. For example:
If $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right] \sim\left[\begin{array}{cc}1 & 2 \\ 0 & 0\end{array}\right]=\operatorname{RREF}(A) \quad$ Then:
$\operatorname{CoISp}(A)=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right]\right\}$ and $\operatorname{CoISp}[\operatorname{RREF}(A)]=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}$ But:
$\left[\begin{array}{l}4 \\ 8\end{array}\right]=4\left[\begin{array}{l}1 \\ 2\end{array}\right] \in \operatorname{ColSp}(A),\left[\begin{array}{l}4 \\ 8\end{array}\right] \neq k\left[\begin{array}{l}1 \\ 0\end{array}\right] \Longrightarrow\left[\begin{array}{l}4 \\ 8\end{array}\right] \notin \operatorname{CoISp}[\operatorname{RREF}(A)]$

Bases for the Row Space \& Column Space (Example)

WEX 4-6-1: Let $A=\left[\begin{array}{rr}0 & 2 \\ -4 & -3 \\ 2 & 2\end{array}\right]$.
Find bases for the row space \& column space of A. Find the dimension of the row space \& column space of A.

Bases for the Row Space \& Column Space (Example)

WEX 4-6-1: Let $A=\left[\begin{array}{rr}0 & 2 \\ -4 & -3 \\ 2 & 2\end{array}\right]$.
Find bases for the row space \& column space of A.
Find the dimension of the row space \& column space of A.
Perform Gauss-Jordan on A :

$$
\left[\begin{array}{rr}
0 & 2 \\
-4 & -3 \\
2 & 2
\end{array}\right] \sim\left[\begin{array}{rr}
2 & 2 \\
-4 & -3 \\
0 & 2
\end{array}\right] \sim\left[\begin{array}{rr}
1 & 1 \\
-4 & -3 \\
0 & 2
\end{array}\right] \sim\left[\begin{array}{rr}
1 & 1 \\
0 & \boxed{1} \\
0 & 2
\end{array}\right] \sim\left[\begin{array}{cc}
1 & 0 \\
0 & \boxed{1} \\
0 & 0
\end{array}\right]
$$

Bases for the Row Space \& Column Space (Example)

WEX 4-6-1: Let $A=\left[\begin{array}{rr}0 & 2 \\ -4 & -3 \\ 2 & 2\end{array}\right]$.
Find bases for the row space \& column space of A.
Find the dimension of the row space \& column space of A.
Perform Gauss-Jordan on A :
$\left[\begin{array}{rr}0 & 2 \\ -4 & -3 \\ 2 & 2\end{array}\right] \sim\left[\begin{array}{rr}2 & 2 \\ -4 & -3 \\ 0 & 2\end{array}\right] \sim\left[\begin{array}{rr}1 & 1 \\ -4 & -3 \\ 0 & 2\end{array}\right] \sim\left[\begin{array}{rr}1 & 1 \\ 0 & 1 \\ 0 & 2\end{array}\right] \sim\left[\begin{array}{cc}1 & 0 \\ 0 & \boxed{1} \\ 0 & 0\end{array}\right]$
$\Longrightarrow \operatorname{RowSp}(A)=\operatorname{span}\{$ pivot rows of $\operatorname{RREF}(A)\}=\operatorname{span}\{(1,0),(0,1)\}$
$\Longrightarrow \operatorname{dim} \operatorname{RowSp}(A)=(\#$ basis vectors in $\operatorname{RowSp}(A))=2$
$\Longrightarrow \operatorname{CoISp}(A)=\operatorname{span}\{$ pivot columns of $A\}=\operatorname{span}\left\{\left[\begin{array}{r}0 \\ -4 \\ 2\end{array}\right],\left[\begin{array}{r}2 \\ -3 \\ 2\end{array}\right]\right\}$
$\Longrightarrow \operatorname{dim} \operatorname{CoISp}(A)=(\#$ basis vectors in $\operatorname{CoISp}(A))=2$

Bases for the Row Space \& Column Space (Example)

WEX 4-6-2: Let $A=\left[\begin{array}{rrrrr}1 & 2 & -2 & 1 & -2 \\ 4 & 2 & -4 & -2 & -2 \\ 1 & -1 & 0 & 0 & 1\end{array}\right]$.
Find bases for the row space \& column space of A. Find the dimension of the row space \& column space of A.

Bases for the Row Space \& Column Space (Example)

WEX 4-6-2: Let $A=\left[\begin{array}{rrrrr}1 & 2 & -2 & 1 & -2 \\ 4 & 2 & -4 & -2 & -2 \\ 1 & -1 & 0 & 0 & 1\end{array}\right]$.
Find bases for the row space \& column space of A.
Find the dimension of the row space \& column space of A.
Perform Gauss-Jordan on A :

$$
\left[\begin{array}{rrrrr}
1 & 2 & -2 & 1 & -2 \\
4 & 2 & -4 & -2 & -2 \\
1 & -1 & 0 & 0 & 1
\end{array}\right] \sim \cdots \sim\left[\begin{array}{ccccc}
\hline 1 & 0 & -2 / 3 & 0 & 0 \\
0 & 1 & -2 / 3 & 0 & -1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Bases for the Row Space \& Column Space (Example)

WEX 4-6-2: Let $A=\left[\begin{array}{rrrrr}1 & 2 & -2 & 1 & -2 \\ 4 & 2 & -4 & -2 & -2 \\ 1 & -1 & 0 & 0 & 1\end{array}\right]$.
Find bases for the row space \& column space of A.
Find the dimension of the row space \& column space of A.
Perform Gauss-Jordan on A :
$\left[\begin{array}{rrrrr}1 & 2 & -2 & 1 & -2 \\ 4 & 2 & -4 & -2 & -2 \\ 1 & -1 & 0 & 0 & 1\end{array}\right] \sim \cdots \sim\left[\begin{array}{ccccc}\hline 1 & 0 & -2 / 3 & 0 & 0 \\ 0 & 1 & -2 / 3 & 0 & -1 \\ 0 & 0 & 0 & 1 & 0\end{array}\right]$
$\Longrightarrow \operatorname{RowSp}(A)=\operatorname{span}\{(1,0,-2 / 3,0,0),(0,1,-2 / 3,0,-1),(0,0,0,1,0)\}$
$\Longrightarrow \operatorname{dim} \operatorname{RowSp}(A)=(\#$ basis vectors in $\operatorname{RowSp}(A))=3$
$\Longrightarrow \operatorname{CoISp}(A)=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 4 \\ 1\end{array}\right],\left[\begin{array}{r}2 \\ 2 \\ -1\end{array}\right],\left[\begin{array}{r}1 \\ -2 \\ 0\end{array}\right]\right\}$
$\Longrightarrow \operatorname{dim} \operatorname{ColSp}(A)=(\#$ basis vectors in $\operatorname{CoISp}(A))=3$

More on the Row Space \& Column Space

In the previous examples, the row \& column space had the same dimension!
This is no accident:

Theorem

(Row Space \& Column Space have the Same Dimension)
Let $A \in \mathbb{R}^{m \times n} . \quad$ Then, $\quad \operatorname{dim} \operatorname{ColSp}(A)=\operatorname{dim} \operatorname{RowSp}(A)$
PROOF: See textbook if interested. (it's long \& technical)
An alternative method to find bases for the row space \& column space of matrix A is to consider the transpose of A :

Corollary

(Finding Bases for Row Space \& Column Space via Transposing)
Let $A \in \mathbb{R}^{m \times n}$. Then:
(i) Row space of A is Column Space of $A^{T}: \quad \operatorname{RowSp}(A)=\operatorname{ColSp}\left(A^{T}\right)$
(ii) Column space of A is Row Space of $A^{T}: \quad \operatorname{ColSp}(A)=\operatorname{RowSp}\left(A^{T}\right)$

This provides 2 methods to find the basis of a subspace spanned by vectors.

Finding Basis of Subspace Spanned by Many Vectors

WEX 4-6-3: Let $\mathcal{S}=\{(-1,-1,2),(1,1,3),(-2,-2,2)\} \equiv\left\{\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}, \overrightarrow{\mathbf{v}}_{3}\right\} \subseteq \mathbb{R}^{3}$.
Find a basis for the subspace of \mathbb{R}^{3} spanned by \mathcal{S}. Find the dimension of $\operatorname{span}(\mathcal{S})$.

Finding Basis of Subspace Spanned by Many Vectors

WEX 4-6-3: Let $\mathcal{S}=\{(-1,-1,2),(1,1,3),(-2,-2,2)\} \equiv\left\{\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}, \overrightarrow{\mathbf{v}}_{3}\right\} \subseteq \mathbb{R}^{3}$.
Find a basis \mathcal{B} for the subspace of \mathbb{R}^{3} spanned by \mathcal{S}.
Find the dimension of $\operatorname{span}(\mathcal{S})$.
(Method One)
Form matrix A with $\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}, \overrightarrow{\mathbf{v}}_{3}$ as its rows \& find the row space of A :
$A=\left[\begin{array}{lll}- & \overrightarrow{\mathbf{v}}_{1} & - \\ - & \overrightarrow{\mathbf{v}}_{2} & - \\ - & \overrightarrow{\mathbf{v}}_{3} & -\end{array}\right]=\left[\begin{array}{rrr}-1 & -1 & 2 \\ 1 & 1 & 3 \\ -2 & -2 & 2\end{array}\right] \sim \cdots \sim\left[\begin{array}{ccc}1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$
$\Longrightarrow \operatorname{RowSp}(A)=\operatorname{span}\{$ pivot rows of $\operatorname{RREF}(A)\}=\operatorname{span}\{(1,1,0),(0,0,1)\}$
\Longrightarrow Basis $\mathcal{B}=\{$ basis vectors of $\operatorname{RowSp}(A)\}=\{(1,1,0),(0,0,1)\}$
$\Longrightarrow \operatorname{dim}(\operatorname{span}\{\mathcal{S}\})=(\#$ basis vectors in $\mathcal{B})=2$

Finding Basis of Subspace Spanned by Many Vectors

WEX 4-6-3: Let $\mathcal{S}=\{(-1,-1,2),(1,1,3),(-2,-2,2)\} \equiv\left\{\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}, \overrightarrow{\mathbf{v}}_{3}\right\} \subseteq \mathbb{R}^{3}$.
Find a basis \mathcal{B} for the subspace of \mathbb{R}^{3} spanned by \mathcal{S}.
Find the dimension of $\operatorname{span}(\mathcal{S})$.
(Method Two)
Form matrix A with $\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}, \overrightarrow{\mathbf{v}}_{3}$ as its columns \& find the column space of A :
$A=\left[\begin{array}{ccc}\mid & \mid & \mid \\ \overrightarrow{\mathbf{v}}_{1} & \overrightarrow{\mathbf{v}}_{2} & \overrightarrow{\mathbf{v}}_{3} \\ \mid & \mid & \mid\end{array}\right]=\left[\begin{array}{rrr}-1 & 1 & -2 \\ -1 & 1 & -2 \\ 2 & 3 & 2\end{array}\right] \sim \cdots \sim\left[\begin{array}{ccc}1 & 0 & 8 / 5 \\ 0 & 1 & -2 / 5 \\ 0 & 0 & 0\end{array}\right]$
$\Longrightarrow \operatorname{ColSp}(A)=\operatorname{span}\{$ pivot columns of $A\}=\operatorname{span}\left\{\left[\begin{array}{r}-1 \\ -1 \\ 2\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 3\end{array}\right]\right\}$
\Longrightarrow Basis $\mathcal{B}=\{$ basis vectors of $\operatorname{ColSp}(A)\}=\left\{\left[\begin{array}{r}-1 \\ -1 \\ 2\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 3\end{array}\right]\right\}$
$\Longrightarrow \operatorname{dim}(\operatorname{span}\{\mathcal{S}\})=(\#$ basis vectors in $\mathcal{B})=2$

Both Methods give completely different Bases!!

In the previous example, $\mathcal{S}=\{(-1,-1,2),(1,1,3),(-2,-2,2)\}$
Method One: Basis $\mathcal{B}_{1}=\{(1,1,0),(0,0,1)\}$
Method Two: Basis $\mathcal{B}_{2}=\{(-1,-1,2),(1,1,3)\}$
At first glance, it seems unlikely that bases $\mathcal{B}_{1}, \mathcal{B}_{2}$ span the same subspace!!
But in fact, they do span the same subspace as each vector in \mathcal{S} is a linear combination of vectors in each basis:

Rank of a Matrix (Definition)

Definition

(Rank of a Matrix)
Let $A \in \mathbb{R}^{m \times n}$.
Then the rank of A is the dimension of the column (row) space of A :

$$
\operatorname{rank}(A):=\operatorname{dim} \operatorname{ColSp}(A)=\operatorname{dim} \operatorname{RowSp}(A)
$$

Corollary

(Rank of a Matrix)
Let $A \in \mathbb{R}^{m \times n}$.
Then the rank of A is simply the \# of pivots in RREF(A).
Matrix A has full row rank $\Longleftrightarrow \operatorname{rank}(A)=m$
Matrix A has full column rank $\Longleftrightarrow \operatorname{rank}(A)=n$

The 1 ${ }^{\text {st }}$ Example Revisited in terms of Rank

WEX 4-6-4: Let $A=\left[\begin{array}{rr}0 & 2 \\ -4 & -3 \\ 2 & 2\end{array}\right]$.
Find the rank of A \& dimension of the row space \& column space.
Perform Gauss-Jordan on A :

$$
\left[\begin{array}{rr}
0 & 2 \\
-4 & -3 \\
2 & 2
\end{array}\right] \sim\left[\begin{array}{rr}
2 & 2 \\
-4 & -3 \\
0 & 2
\end{array}\right] \sim\left[\begin{array}{rr}
1 & 1 \\
-4 & -3 \\
0 & 2
\end{array}\right] \sim\left[\begin{array}{rr}
1 & 1 \\
0 & 1 \\
0 & 2
\end{array}\right] \sim\left[\begin{array}{rc}
1 & 0 \\
0 & \boxed{1} \\
0 & 0
\end{array}\right]
$$

$\Longrightarrow \operatorname{rank}(A)=(\#$ pivots in $\operatorname{RREF}(A))=2$
$\Longrightarrow \operatorname{dim} \operatorname{RowSp}(A)=\operatorname{rank}(A)=2$
$\Longrightarrow \operatorname{dim} \operatorname{ColSp}(A)=\operatorname{rank}(A)=2$
Since every column of $\operatorname{RREF}(A)$ has a pivot, A has full column rank

The $2^{n d}$ Example Revisited in terms of Rank

WEX 4-6-5: Let $A=\left[\begin{array}{rrrrr}1 & 2 & -2 & 1 & -2 \\ 4 & 2 & -4 & -2 & -2 \\ 1 & -1 & 0 & 0 & 1\end{array}\right]$.
Find the rank of A \& dimension of the row space \& column space.
Perform Gauss-Jordan on A :
$\left[\begin{array}{rrrrr}1 & 2 & -2 & 1 & -2 \\ 4 & 2 & -4 & -2 & -2 \\ 1 & -1 & 0 & 0 & 1\end{array}\right] \sim \cdots \sim\left[\begin{array}{ccccc}\boxed{1} & 0 & -2 / 3 & 0 & 0 \\ 0 & \boxed{1} & -2 / 3 & 0 & -1 \\ 0 & 0 & 0 & 1 & 0\end{array}\right]$
$\Longrightarrow \operatorname{rank}(A)=(\#$ pivots in $\operatorname{RREF}(A))=3$
$\Longrightarrow \operatorname{dim} \operatorname{RowSp}(A)=\operatorname{rank}(A)=3$
$\Longrightarrow \operatorname{dim} \operatorname{ColSp}(A)=\operatorname{rank}(A)=3$
Since every row of $\operatorname{RREF}(A)$ has a pivot, A has full row rank

Matrix-Vector Multiplication \& Linear Combinations

A matrix-vector product can be a viewed as a linear combination of the columns of the matrix:

$$
A \mathbf{x}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
x_{1} a_{11}+x_{2} a_{12}+x_{3} a_{13} \\
x_{1} a_{21}+x_{2} a_{22}+x_{3} a_{23} \\
x_{1} a_{31}+x_{2} a_{32}+x_{3} a_{33}
\end{array}\right]
$$

$$
\binom{\text { Undo Vector Addition }}{\text { and Scalar Multiplication }}=x_{1}\left[\begin{array}{l}
a_{11} \\
a_{21} \\
a_{31}
\end{array}\right]+x_{2}\left[\begin{array}{l}
a_{12} \\
a_{22} \\
a_{32}
\end{array}\right]+x_{1}\left[\begin{array}{l}
a_{13} \\
a_{23} \\
a_{33}
\end{array}\right]
$$

—— OR WHEN MATRIX IS PARTITIONED INTO COLUMN VECTORS

$$
A \mathbf{x}=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3} \\
\mid & \mid & \mid
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+x_{3} \mathbf{v}_{3}
$$

Column Space \& Linear System Consistency

Column spaces provide qualitive information about linear systems:

Theorem

(Column Space \& Linear System Consistency)
Let $A \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^{n}$.
Then $m \times n$ linear system $A \mathbf{x}=\mathbf{b}$ is consistent $\Longleftrightarrow \mathbf{b} \in \operatorname{ColSp}(A)$
i.e. $A \mathbf{x}=\mathbf{b}$ has solution(s) $\Longleftrightarrow \mathbf{b}$ is a linear combination of the columns of A.

For instance, if $A=\left[\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right]$, then $\mathbf{b}=\left[\begin{array}{l}2 \\ 3\end{array}\right] \in \operatorname{CoISp}(A)$ since

$$
\begin{aligned}
& {[A \mid \mathbf{b}]=\left[\begin{array}{rr|r}
1 & -1 & 2 \\
1 & 1 & 3
\end{array}\right] \xrightarrow{\text { Gauss-Jordan }}\left[\begin{array}{rr|r}
1 & 0 & 5 / 2 \\
0 & 1 & 1 / 2
\end{array}\right]=\left[\operatorname{RREF}(A) \mid \mathbf{b}^{*}\right] } \\
\Longrightarrow & {\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\left(\frac{5}{2}\right)\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left(\frac{1}{2}\right)\left[\begin{array}{r}
-1 \\
1
\end{array}\right] }
\end{aligned}
$$

$\Longrightarrow \mathbf{b}$ is a linear combination of the columns of A

Column Space \& Linear System Consistency

Column spaces provide qualitive information about linear systems:

Theorem

(Column Space \& Linear System Consistency)
Let $A \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^{n}$.
Then $m \times n$ linear system $A \mathbf{x}=\mathbf{b}$ is consistent $\Longleftrightarrow \mathbf{b} \in \operatorname{CoISp}(A)$
i.e. $A \mathbf{x}=\mathbf{b}$ has solution(s) $\Longleftrightarrow \mathbf{b}$ is a linear combination of the columns of A.

For instance, if $A=\left[\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right]$, then $\mathbf{b}=\left[\begin{array}{l}2 \\ 3\end{array}\right] \notin \operatorname{ColSp}(A)$ since

$$
[A \mid \mathbf{b}]=\left[\begin{array}{ll|l}
1 & 1 & 2 \\
2 & 2 & 3
\end{array}\right] \xrightarrow{\text { Gauss-Jordan }}\left[\begin{array}{rr|r}
\boxed{1} & 1 & 2 \\
0 & 0 & -1
\end{array}\right] \leftarrow \text { CONTRADICTION! }
$$

$\Longrightarrow \mathbf{b}$ is not a linear combination of the columns of A

PART II

PART II:

NULLSPACE OF A MATRIX

The Null Space of a Matrix (Definition)

Definition

(Null Space of a Matrix)
Let $A \in \mathbb{R}^{m \times n}$. Then the null space of A is the set of all solutions to $A \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{0}}$:

$$
\operatorname{NulSp}(A):=\left\{\overrightarrow{\mathbf{x}} \in \mathbb{R}^{n}: A \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{0}}\right\}
$$

Theorem

(Null Space is a Subspace)
Let $A \in \mathbb{R}^{m \times n}$. Then $\operatorname{NuISp}(A)$ is a subspace of \mathbb{R}^{n}.
The nullity of A is the dimension of its null space: nullity $(A):=\operatorname{dim} \operatorname{NuISp}(A)$

The Nullspace of a Matrix (Definition)

Definition

(Nullspace of a Matrix)
Let $A \in \mathbb{R}^{m \times n}$. Then the nullspace of A is the set of all solutions to $A \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{0}}$:

$$
\operatorname{NulSp}(A):=\left\{\overrightarrow{\mathbf{x}} \in \mathbb{R}^{n}: A \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{0}}\right\}
$$

Theorem

(Nullspace of a Matrix is a Subspace)
Let $A \in \mathbb{R}^{m \times n}$. Then $\operatorname{NulSp}(A)$ is a subspace of \mathbb{R}^{n}.
The nullity of A is the dimension of its nullspace: nullity $(A):=\operatorname{dim} \operatorname{NulSp}(A)$
PROOF: Clearly, $\operatorname{NuISp}(A) \subseteq \mathbb{R}^{n}$ and $A \overrightarrow{\mathbf{0}}=\overrightarrow{\mathbf{0}} \Longrightarrow \overrightarrow{\mathbf{0}} \in \operatorname{NuISp}(A)$
Let $\overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}} \in \operatorname{NuISp}(A)$ and $c \in \mathbb{R}$. Then $A \overrightarrow{\mathbf{u}}=\overrightarrow{\mathbf{0}}$ and $A \overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{0}}$ and
$A(\overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{v}})=A \overrightarrow{\mathbf{u}}+A \overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{0}}+\overrightarrow{\mathbf{0}}=\overrightarrow{\mathbf{0}}$ and $A(c \overrightarrow{\mathbf{v}})=c(A \overrightarrow{\mathbf{v}})=c \overrightarrow{\mathbf{0}}=\overrightarrow{\mathbf{0}}$
$\Longrightarrow A(\overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{v}})=\overrightarrow{\mathbf{0}} \Longrightarrow \overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{v}} \in \operatorname{NuISp}(A) \Longrightarrow \operatorname{NuISp}(A)$ is closed under VA
$\Longrightarrow A(c \overrightarrow{\mathbf{v}})=\overrightarrow{\mathbf{0}} \Longrightarrow c \overrightarrow{\mathbf{v}} \in \operatorname{NuISp}(A) \Longrightarrow \operatorname{NuISp}(A)$ is closed under SM
$\therefore \operatorname{NuISp}(A)$ is a subspace of \mathbb{R}^{n}. QED

Finding the Nullspace \& Nullity of a Matrix (Procedure)

Proposition

(Finding the Nullspace \& Nullity of a Matrix)
TASK: Find the nullspace \& nullity of matrix $A \in \mathbb{R}^{m \times n}$.
(1) Perform Gauss-Jordan Elimination on augemented matrix $[A \mid \overrightarrow{\mathbf{0}}]$
(2) Assign unique parameters to the free variables.
(3) Form resulting solution $\overrightarrow{\mathbf{x}}$ to $A \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{0}}$ by interpreting rows of $[R R E F(A) \mid \overrightarrow{\mathbf{0}}]$
(4) "Undo" vector addition by placing each parameter into its own vector.
(5) "Undo" scalar multiplication by factoring the parameter from each vector.
(\star) The resulting vectors form a basis for the nullspace of A.
(\star) nullity $(A)=\#$ basis vectors for the nullspace of A.
(\star) If the only solution to $A \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{0}}$ is $\overrightarrow{\mathbf{0}}$, then $\operatorname{NuISp}(A)=\{\overrightarrow{\mathbf{0}}\}$ \& nullity $(A)=0$.

The $1^{s t}$ Example Revisited in terms of Nullspace

WEX 4-6-6: Let $A=\left[\begin{array}{rr}0 & 2 \\ -4 & -3 \\ 2 & 2\end{array}\right]$. Find the nullspace of A and its dimension.

The $1^{s t}$ Example Revisited in terms of Nullspace

WEX 4-6-6: Let $A=\left[\begin{array}{rr}0 & 2 \\ -4 & -3 \\ 2 & 2\end{array}\right]$. Find the nullspace of A and its dimension.
Perform Gauss-Jordan on augmented matrix $[A \mid \overrightarrow{\mathbf{0}}]$:
$[A \mid \overrightarrow{\mathbf{0}}]=\left[\begin{array}{rr|r}0 & 2 & 0 \\ -4 & -3 & 0 \\ 2 & 2 & 0\end{array}\right] \sim \cdots \sim\left[\begin{array}{cc|c}{[1} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]=[\operatorname{RREF}(A) \mid \overrightarrow{\mathbf{0}}]$

The $1^{s t}$ Example Revisited in terms of Nullspace

WEX 4-6-6: Let $A=\left[\begin{array}{rr}0 & 2 \\ -4 & -3 \\ 2 & 2\end{array}\right]$. Find the nullspace of A and its dimension.
Perform Gauss-Jordan on augmented matrix $[A \mid \overrightarrow{\mathbf{0}}]$:
$[A \mid \overrightarrow{\mathbf{0}}]=\left[\begin{array}{rr|r}0 & 2 & 0 \\ -4 & -3 & 0 \\ 2 & 2 & 0\end{array}\right] \sim \cdots \sim\left[\begin{array}{cc|c}{[1} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]=[\operatorname{RREF}(A) \mid \overrightarrow{\mathbf{0}}]$
Every column of $\operatorname{RREF}(A)$ has a pivot \Longrightarrow there are no free variables.
Interpreting the rows of $[\operatorname{RREF}(A) \mid \overrightarrow{\mathbf{0}}]$ yields: $\left\{\begin{array}{l}1 x_{1}+0 x_{2}=0 \\ 0 x_{1}+1 x_{2}=0 \\ 0 x_{1}+0 x_{2}=0\end{array}\right.$

$$
\Longrightarrow x_{1}=0, x_{2}=0 \Longrightarrow \overrightarrow{\mathbf{x}}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Longrightarrow \operatorname{NuISp}(A)=\left\{\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right\}
$$

Since the nullspace only contains the zero vector, $\operatorname{nullity}(A)=\operatorname{dim} \operatorname{NuISp}(A)=0$

The $2^{n d}$ Example Revisited in terms of Nullspace

WEX 4-6-7: Let $A=\left[\begin{array}{rrrrr}1 & 2 & -2 & 1 & -2 \\ 4 & 2 & -4 & -2 & -2 \\ 1 & -1 & 0 & 0 & 1\end{array}\right]$. Find its nullspace \& nullity.

The $2^{n d}$ Example Revisited in terms of Nullspace

WEX 4-6-7: Let $A=\left[\begin{array}{rrrrr}1 & 2 & -2 & 1 & -2 \\ 4 & 2 & -4 & -2 & -2 \\ 1 & -1 & 0 & 0 & 1\end{array}\right]$. Find its nullspace \& nullity.
Perform Gauss-Jordan on augmented matrix $[A \mid \overrightarrow{\mathbf{0}}]$:

$$
\left[\begin{array}{rrrrr|r}
1 & 2 & -2 & 1 & -2 & 0 \\
4 & 2 & -4 & -2 & -2 & 0 \\
1 & -1 & 0 & 0 & 1 & 0
\end{array}\right] \sim \cdots \sim\left[\begin{array}{ccccc|c}
\hline 1 & 0 & -2 / 3 & 0 & 0 & 0 \\
0 & 1 & -2 / 3 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

The $2^{n d}$ Example Revisited in terms of Nullspace

WEX 4-6-7: Let $A=\left[\begin{array}{rrrrr}1 & 2 & -2 & 1 & -2 \\ 4 & 2 & -4 & -2 & -2 \\ 1 & -1 & 0 & 0 & 1\end{array}\right]$. Find its nullspace \& nullity.
Perform Gauss-Jordan on augmented matrix $[A \mid \overrightarrow{\mathbf{0}}]$:

$$
\left[\begin{array}{rrrrr|r}
1 & 2 & -2 & 1 & -2 & 0 \\
4 & 2 & -4 & -2 & -2 & 0 \\
1 & -1 & 0 & 0 & 1 & 0
\end{array}\right] \sim \cdots \sim\left[\begin{array}{ccccc|c}
\hline 1 & 0 & -2 / 3 & 0 & 0 & 0 \\
0 & 1 & -2 / 3 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

Columns $1,2,4$ of $\operatorname{RREF}(A)$ have pivots $\Longrightarrow x_{3}, x_{5}$ are free variables.
Assign unique parameters to the free variables: $x_{3}=s, x_{5}=t$
Interpret rows of $[\operatorname{RREF}(A) \mid \overrightarrow{\mathbf{0}}]$: $\left\{\begin{aligned} x_{1}-\frac{2}{3} x_{3}=0 & \Longrightarrow \quad x_{1}=\frac{2}{3} s \\ x_{2}-\frac{2}{3} x_{3}-x_{5}=0 & \Longrightarrow \quad x_{2}=\frac{2}{3} s+t \\ x_{4}=0 & \Longrightarrow \quad x_{4}=0\end{aligned}\right.$

The $2^{n d}$ Example Revisited in terms of Nullspace

WEX 4-6-7: Let $A=\left[\begin{array}{rrrrr}1 & 2 & -2 & 1 & -2 \\ 4 & 2 & -4 & -2 & -2 \\ 1 & -1 & 0 & 0 & 1\end{array}\right]$. Find its nullspace \& nullity.
Perform Gauss-Jordan on augmented matrix $[A \mid \overrightarrow{\mathbf{0}}]$:
$\left[\begin{array}{rrrrr|l}1 & 2 & -2 & 1 & -2 & 0 \\ 4 & 2 & -4 & -2 & -2 & 0 \\ 1 & -1 & 0 & 0 & 1 & 0\end{array}\right] \sim \cdots \sim\left[\begin{array}{ccccc|c}\hline 1 & 0 & -2 / 3 & 0 & 0 & 0 \\ 0 & 1 & -2 / 3 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0\end{array}\right]$
$\Longrightarrow \overrightarrow{\mathbf{x}}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right]=\left[\begin{array}{c}\frac{2}{3} s \\ \frac{2}{3} s+t \\ s \\ 0 \\ t\end{array}\right]=\left[\begin{array}{c}\frac{2}{3} s \\ \frac{2}{3} s \\ s \\ 0 \\ 0\end{array}\right]+\left[\begin{array}{l}0 \\ t \\ 0 \\ 0 \\ t\end{array}\right]=s\left[\begin{array}{c}2 / 3 \\ 2 / 3 \\ 1 \\ 0 \\ 0\end{array}\right]+t\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0 \\ 1\end{array}\right]$
$\Longrightarrow \operatorname{NulSp}(A)=\operatorname{span}\left\{\left[\begin{array}{c}2 / 3 \\ 2 / 3 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0 \\ 1\end{array}\right]\right\} \Rightarrow$ nullity $(A)=2$

Nullspace \& Solving Linear Systems

Theorem

(Form of Solutions to a Non-homogeneous Linear System)
Let $A \in \mathbb{R}^{m \times n}$ where $m \leq n \quad$ (i.e. A is square or "short \& wide" rectangular)
Let non-homogeneous linear system $A \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{b}}$ have infinitely many solutions.
Then, the solution to $A \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{b}}$ is $\overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{x}}_{p}+\overrightarrow{\mathbf{x}}_{h} \quad$ where
$\overrightarrow{\mathbf{x}}_{p}$ is the particular solution to $A \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{b}}$
$\overrightarrow{\mathbf{x}}_{h}$ is the homogeneous solution to $A \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{0}}$

Nullspace \& Solving Linear Systems

Theorem

(Form of Solutions to a Non-homogeneous Linear System)
Let $A \in \mathbb{R}^{m \times n}$ where $m \leq n \quad$ (i.e. A is square or "short \& wide" rectangular)
Let non-homogeneous linear system $A \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{b}}$ have infinitely many solutions.
Then, the solution to $A \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{b}}$ is $\overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{x}}_{p}+\overrightarrow{\mathbf{x}}_{h}$ where
$\overrightarrow{\mathbf{x}}_{p}$ is the particular solution to $A \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{b}}$
$\overrightarrow{\mathbf{x}}_{h}$ is the homogeneous solution to $A \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{0}}$
PROOF: Let $\overrightarrow{\mathbf{x}}$ and $\overrightarrow{\mathbf{x}}_{p}$ solve the non-homogeneous linear system.
Then, $A \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{x}}_{p}=\overrightarrow{\mathbf{b}}$
Let $\overrightarrow{\mathbf{x}}_{h}=\overrightarrow{\mathbf{x}}-\overrightarrow{\mathbf{x}}_{p}$. Then, $A \overrightarrow{\mathbf{x}}_{h}=A\left(\overrightarrow{\mathbf{x}}-\overrightarrow{\mathbf{x}}_{p}\right)=A \overrightarrow{\mathbf{x}}-A \overrightarrow{\mathbf{x}}_{p}=\overrightarrow{\mathbf{b}}-\overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{0}}$
$\Longrightarrow A \overrightarrow{\mathbf{x}}_{h}=\overrightarrow{\mathbf{0}}$
$\Longrightarrow \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{x}}_{p}+\overrightarrow{\mathbf{x}}_{h}$
QED

Nullspace \& Solving Linear Systems (Example)

WEX 4-6-8: Find all solution vectors of non-homongeneous linear system $\left\{\begin{aligned} x_{1}+2 x_{2} & -2 x_{3}+x_{4}-2 x_{5}=6 \\ 4 x_{1} & +2 x_{2}-4 x_{3}-2 x_{4}-2 x_{5}=6 \\ x_{1}-x_{2} & +x_{5}=3\end{aligned}\right.$ in terms of $\overrightarrow{\mathbf{x}}_{p} \& \overrightarrow{\mathbf{x}}_{h}$.

Nullspace \& Solving Linear Systems (Example)

WEX 4-6-8: Find all solution vectors of non-homongeneous linear system $\left\{\begin{aligned} & x_{1}+2 x_{2}-2 x_{3}+x_{4}-2 x_{5}=6 \\ & 4 x_{1}+2 x_{2}-4 x_{3}-2 x_{4}-2 x_{5}=6 \\ & x_{1}-x_{2}+x_{5}=3\end{aligned}\right.$ in terms of $\overrightarrow{\mathbf{x}}_{p} \& \overrightarrow{\mathbf{x}}_{h}$.
Perform Gauss-Jordan on augmented matrix $[A \mid \overrightarrow{\mathbf{b}}]$:

$$
[A \mid \overrightarrow{\mathbf{b}}]=\left[\begin{array}{rrrrr|r}
1 & 2 & -2 & 1 & -2 & 6 \\
4 & 2 & -4 & -2 & -2 & 6 \\
1 & -1 & 0 & 0 & 1 & 3
\end{array}\right] \sim\left[\begin{array}{ccccc|r}
\hline 1 & 0 & -2 / 3 & 0 & 0 & 3 \\
0 & 1 & -2 / 3 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 & 0 & 3
\end{array}\right]
$$

Nullspace \& Solving Linear Systems (Example)

WEX 4-6-8: Find all solution vectors of non-homongeneous linear system $\left\{\begin{aligned} x_{1} & +2 x_{2}-2 x_{3}+x_{4}-2 x_{5}=6 \\ 4 x_{1} & +2 x_{2}-4 x_{3}-2 x_{4}-2 x_{5}=6 \\ x_{1}-x_{2} & +x_{5}=3\end{aligned}\right.$ in terms of $\overrightarrow{\mathbf{x}}_{p} \& \overrightarrow{\mathbf{x}}_{h}$.
Perform Gauss-Jordan on augmented matrix $[A \mid \overrightarrow{\mathbf{b}}]$:
$[A \mid \overrightarrow{\mathbf{b}}]=\left[\begin{array}{rrrrr|r}1 & 2 & -2 & 1 & -2 & 6 \\ 4 & 2 & -4 & -2 & -2 & 6 \\ 1 & -1 & 0 & 0 & 1 & 3\end{array}\right] \sim\left[\begin{array}{ccccc|c}\hline 1 & 0 & -2 / 3 & 0 & 0 & 3 \\ 0 & 1 & -2 / 3 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 3\end{array}\right]$
Columns $1,2,4$ of $\operatorname{RREF}(A)$ have pivots $\Longrightarrow x_{3}, x_{5}$ are free variables.
Assign unique parameters to the free variables: $x_{3}=s, x_{5}=t$
Interpret rows: $\left\{\begin{array}{rl}x_{1}-\frac{2}{3} x_{3}=3 & \Longrightarrow x_{1}=3+\frac{2}{3} s \\ x_{2}-\frac{2}{3} x_{3}-x_{5}=0 & \Longrightarrow \\ x_{2}=\frac{2}{3} s+t \\ x_{4}=3 & \Longrightarrow\end{array} x_{4}=3\right.$.

Nullspace \& Solving Linear Systems (Example)

WEX 4-6-8: Find all solution vectors of non-homongeneous linear system $\left\{\begin{array}{r}x_{1}+2 x_{2}-2 x_{3}+x_{4}-2 x_{5}=6 \\ 4 x_{1}+2 x_{2}-4 x_{3}-2 x_{4}-2 x_{5}=6 \\ x_{1}-x_{2}\end{array}\right.$ in terms of $\overrightarrow{\mathbf{x}}_{p} \& \overrightarrow{\mathbf{x}}_{h}$.
Perform Gauss-Jordan on augmented matrix $[A \mid \overrightarrow{\mathbf{b}}]$:
$[A \mid \overrightarrow{\mathbf{b}}]=\left[\begin{array}{rrrrr|r}1 & 2 & -2 & 1 & -2 & 6 \\ 4 & 2 & -4 & -2 & -2 & 6 \\ 1 & -1 & 0 & 0 & 1 & 3\end{array}\right] \sim\left[\begin{array}{ccccc|c}\hline 1 & 0 & -2 / 3 & 0 & 0 & 3 \\ 0 & 1 & -2 / 3 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 3\end{array}\right]$
Interpret rows: $\left\{\begin{aligned} & x_{1}-\frac{2}{3} x_{3}=3 \Longrightarrow \\ & x_{1}=3+\frac{2}{3} s \\ & x_{2}-\frac{2}{3} x_{3}-x_{5}=0 \Longrightarrow \\ & x_{2}=\frac{2}{3} s+t \\ & x_{4}=3 \Longrightarrow \\ & x_{4}=3\end{aligned}\right.$
$\overrightarrow{\mathbf{x}}=\left[\begin{array}{c}3+\frac{2}{3} s \\ \frac{2}{3} s+t \\ s \\ 3 \\ t\end{array}\right]=\left[\begin{array}{l}3 \\ 0 \\ 0 \\ 3 \\ 0\end{array}\right]+\left[\begin{array}{c}\frac{2}{3} s \\ \frac{2}{3} s \\ s \\ 0 \\ 0\end{array}\right]+\left[\begin{array}{c}0 \\ t \\ 0 \\ 0 \\ t\end{array}\right]=\left[\begin{array}{l}3 \\ 0 \\ 0 \\ 3 \\ 0\end{array}\right]+s\left[\begin{array}{c}2 / 3 \\ 2 / 3 \\ 1 \\ 0 \\ 0\end{array}\right]+t\left[\begin{array}{c}0 \\ 1 \\ 0 \\ 0 \\ 1\end{array}\right]$

Nullspace \& Solving Linear Systems (Example)

WEX 4-6-8: Find all solution vectors of non-homongeneous linear system $\left\{\begin{aligned} x_{1}+2 x_{2} & -2 x_{3}+x_{4}-2 x_{5}=6 \\ 4 x_{1} & +2 x_{2}-4 x_{3}-2 x_{4}-2 x_{5}=6 \\ x_{1}-x_{2} & +x_{5}=3\end{aligned}\right.$ in terms of $\overrightarrow{\mathbf{x}}_{p} \& \overrightarrow{\mathbf{x}}_{h}$.
Perform Gauss-Jordan on augmented matrix $[A \mid \overrightarrow{\mathbf{b}}]$:

$$
[A \mid \overrightarrow{\mathbf{b}}]=\left[\begin{array}{rrrrr|r}
1 & 2 & -2 & 1 & -2 & 6 \\
4 & 2 & -4 & -2 & -2 & 6 \\
1 & -1 & 0 & 0 & 1 & 3
\end{array}\right] \sim\left[\begin{array}{ccccc|r}
\hline 1 & 0 & -2 / 3 & 0 & 0 & 3 \\
0 & \boxed{1} & -2 / 3 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 & 0 & 3
\end{array}\right]
$$

$\overrightarrow{\mathbf{x}}=\underbrace{\left[\begin{array}{l}3 \\ 0 \\ 0 \\ 3 \\ 0\end{array}\right]}_{\overrightarrow{\mathbf{x}}_{p}}+s \underbrace{\left[\begin{array}{c}2 / 3 \\ 2 / 3 \\ 1 \\ 0 \\ 0\end{array}\right]}_{\overrightarrow{\mathbf{x}}_{h}}+t \underbrace{\left[\begin{array}{c}0 \\ 1 \\ 0 \\ 0 \\ 1\end{array}\right]}_{\overrightarrow{\mathbf{x}}_{h}}$

PART III

PART III:

EQUIVALENT CONDITIONS FOR VARIOUS TYPES OF MATRICES

Equivalent Conditions for Invertible Square Matrices

Theorem

(Equivalent Conditions for Invertible Square Matrices)
Let $A \in \mathbb{R}^{n \times n}$ be a square matrix. Then the following are equivalent:

- RREF(A) has n pivots
- $\operatorname{rank}(A)=n$
- A has full row rank \& full column rank
- The rows of A are linearly independent. Ditto for the columns of A.
- $\operatorname{dim} \operatorname{RowSp}(A)=n$
- $\operatorname{dim} \operatorname{ColSp}(A)=n$
- $\operatorname{nullity}(A)=0$ \& $\operatorname{NuISp}(A)=\{\overrightarrow{\boldsymbol{0}}\}$
- Linear system $A \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{0}}$ has only the trivial solution $\overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{0}}$
- Linear system $A \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{b}}$ has unique solution $A^{-1} \overrightarrow{\mathbf{b}}$ for every $\overrightarrow{\mathbf{b}} \in \mathbb{R}^{n}$
- A is invertible (non-singular)
- $\operatorname{det}(A) \neq 0$

Equivalent Conditions for Singular Square Matrices

Theorem

(Equivalent Conditions for Singular Square Matrices)
Let $A \in \mathbb{R}^{n \times n}$ be a square matrix and $r<n$.
Then the following are equivalent:

- RREF(A) has r pivots
- $\operatorname{rank}(A)=r$
- The rows of A are linearly dependent. Ditto for the columns of A.
- $\operatorname{dim} \operatorname{RowSp}(A)=r$
- $\operatorname{dim} \operatorname{ColSp}(A)=r$
- $\operatorname{nullity}(A)=n-r$
- Linear system $A \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{0}}$ has infinitely solutions $\overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{x}}_{h}$
- Linear system $A \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{b}}$ has infinitely many solutions only if $\overrightarrow{\mathbf{b}} \in \operatorname{ColSp}(A)$
- Linear system $A \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{b}}$ has no solution only if $\overrightarrow{\mathbf{b}} \notin \operatorname{ColSp}(A)$
- A is not invertible (singular)
- $\operatorname{det}(A)=0$

Equivalent Conditions for "Short \& Wide" Matrices

Theorem

(Equivalent Conditions for "Short \& Wide" Rectangular Matrices)
Let $A \in \mathbb{R}^{m \times n}$ be a "short \& wide" rectangular matrix ($m<n$).
Then the following are equivalent:

- RREF(A) has m pivots
- $\operatorname{rank}(A)=m$
- A has full row rank
- The rows of A are linearly independent.
- $\operatorname{dim} \operatorname{RowSp}(A)=m$
- $\operatorname{dim} \operatorname{ColSP}(A)=m$
- $\operatorname{nullity}(A)=n-m$
- Linear system $A \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{0}}$ has infinitely solutions $\overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{x}}_{h}$
- Linear system $A \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{b}}$ has infinitely solutions $\overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{x}}_{p}+\overrightarrow{\mathbf{x}}_{h}$

Equivalent Conditions for "Tall \& Thin" Matrices

Theorem

(Equivalent Conditions for "Tall \& Thin" Rectangular Matrices)
Let $A \in \mathbb{R}^{m \times n}$ be a "tall \& thin" rectangular matrix $(m>n)$.
Then the following are equivalent:

- RREF(A) has n pivots
- $\operatorname{rank}(A)=n$
- A has full column rank
- The columns of A are linearly independent.
- $\operatorname{dim} \operatorname{RowSp}(A)=n$
- $\operatorname{dim} \operatorname{CoISp}(A)=n$
- $\operatorname{nullity}(A)=0$ \& $\operatorname{NuISp}(A)=\{\overrightarrow{\boldsymbol{0}}\}$
- Linear system $A \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{0}}$ has only the trivial solution $\overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{0}}$
- Linear system $A \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{b}}$ has unique solution only if $\overrightarrow{\mathbf{b}} \in \operatorname{ColSp}(A)$
- Linear system $A \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{b}}$ has no solution only if $\overrightarrow{\mathbf{b}} \notin \operatorname{CoISp}(A)$

Equivalent Conditions for Rectangular Matrices

Theorem

(Equivalent Conditions for All Rectangular Matrices)
Let $A \in \mathbb{R}^{m \times n}$ be a rectangular matrix and $r<\min \{m, n\}$ (i.e. $r<m \& r<n$) Then the following are equivalent:

- RREF(A) has r pivots
- $\operatorname{rank}(A)=r$
- $\operatorname{dim} \operatorname{ColSp}(A)=r$
- $\operatorname{dim} \operatorname{RowSp}(A)=r$
- nullity $(A)=n-r$
- Linear system $A \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{0}}$ has infinitely solutions $\overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{x}}_{h}$
- Linear system $A \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{b}}$ has zero, one, or infinitely many solutions

Fin.

