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PART I:

ROW SPACE OF A MATRIX
COLUMN SPACE OF A MATRIX

RANK OF A MATRIX
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Row Space & Column Space of a Matrix (Definition)

Definition
(Row Space & Column Space of a Matrix)

Let A ∈ Rm×n be an m× n matrix. Then:

The row space of A is the subspace of Rn spanned by the rows of A:

RowSp(A) := span{rows of A} ⊆ Rn

Why Rn? Because each row of A has n entries.

The column space of A is the subspace of Rm spanned by columns of A:

ColSp(A) := span{columns of A} ⊆ Rm

Why Rm? Because each column of A has m entries.
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Finding Bases for the Row Space & Column Space

Proposition
(Finding Bases for the Row Space & Column Space)

TASK: Find bases for RowSp(A) & ColSp(A) where matrix A ∈ Rm×n.

(1) Perform Gauss-Jordan Elimination on matrix A.

(?) The pivot rows of RREF(A) form a basis for RowSp(A).
(?) The pivot columns of A form a basis for ColSp(A).

WARNING #1: In general, RowSp(A) 6= span{pivot rows of A}.
This may happen if row swaps are performed for Gauss-Jordan:

If A =

[
0 0
2 4

]
∼
[

2 4
0 0

]
∼
[

1 2
0 0

]
= RREF(A) Then:

RowSp(A) = span{(1, 2)} 6= span{(0, 0)} = span{pivot rows of A}:
(4, 8) = 4(1, 2) ∈ RowSp(A),
(4, 8) 6= k(0, 0) =⇒ (4, 8) 6∈ span{pivot rows of A}
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Finding Bases for the Row Space & Column Space

Proposition
(Finding Bases for the Row Space & Column Space)

TASK: Find bases for RowSp(A) & ColSp(A) where matrix A ∈ Rm×n.

(1) Perform Gauss-Jordan Elimination on matrix A.

(?) The pivot rows of RREF(A) form a basis for RowSp(A).
(?) The pivot columns of A form a basis for ColSp(A).

WARNING #2: In general, ColSp(A) 6= ColSp[RREF(A)]. For example:

If A =

[
1 2
2 4

]
∼
[

1 2
0 0

]
= RREF(A) Then:

ColSp(A) = span
{[

1
2

]}
and ColSp[RREF(A)] = span

{[
1
0

]}
But:[

4
8

]
= 4

[
1
2

]
∈ ColSp(A),

[
4
8

]
6= k

[
1
0

]
=⇒

[
4
8

]
6∈ ColSp[RREF(A)]
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Bases for the Row Space & Column Space (Example)

WEX 4-6-1: Let A =

 0 2
−4 −3

2 2

.

Find bases for the row space & column space of A.
Find the dimension of the row space & column space of A.
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Bases for the Row Space & Column Space (Example)

WEX 4-6-1: Let A =

 0 2
−4 −3

2 2

.

Find bases for the row space & column space of A.
Find the dimension of the row space & column space of A.

Perform Gauss-Jordan on A: 0 2
−4 −3

2 2

 ∼
 2 2
−4 −3

0 2

 ∼
 1 1
−4 −3

0 2

 ∼
 1 1

0 1
0 2

 ∼
 1 0

0 1
0 0
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Bases for the Row Space & Column Space (Example)

WEX 4-6-1: Let A =

 0 2
−4 −3

2 2

.

Find bases for the row space & column space of A.
Find the dimension of the row space & column space of A.

Perform Gauss-Jordan on A: 0 2
−4 −3

2 2

 ∼
 2 2
−4 −3

0 2

 ∼
 1 1
−4 −3

0 2

 ∼
 1 1

0 1
0 2

 ∼
 1 0

0 1
0 0


=⇒ RowSp(A) = span{pivot rows of RREF(A)} = span{(1, 0), (0, 1)}

=⇒ dim RowSp(A) = (# basis vectors in RowSp(A)) = 2

=⇒ ColSp(A) = span{pivot columns of A} = span


 0
−4

2

 ,

 2
−3

2


=⇒ dim ColSp(A) = (# basis vectors in ColSp(A)) = 2

Josh Engwer (TTU) Row Space, Column Space, Null Space, Rank 12 October 2015 8 / 47



Bases for the Row Space & Column Space (Example)

WEX 4-6-2: Let A =

 1 2 −2 1 −2
4 2 −4 −2 −2
1 −1 0 0 1

.

Find bases for the row space & column space of A.
Find the dimension of the row space & column space of A.
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Bases for the Row Space & Column Space (Example)

WEX 4-6-2: Let A =

 1 2 −2 1 −2
4 2 −4 −2 −2
1 −1 0 0 1

.

Find bases for the row space & column space of A.
Find the dimension of the row space & column space of A.

Perform Gauss-Jordan on A: 1 2 −2 1 −2
4 2 −4 −2 −2
1 −1 0 0 1

 ∼ · · · ∼
 1 0 −2/3 0 0

0 1 −2/3 0 −1
0 0 0 1 0
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Bases for the Row Space & Column Space (Example)

WEX 4-6-2: Let A =

 1 2 −2 1 −2
4 2 −4 −2 −2
1 −1 0 0 1

.

Find bases for the row space & column space of A.
Find the dimension of the row space & column space of A.

Perform Gauss-Jordan on A: 1 2 −2 1 −2
4 2 −4 −2 −2
1 −1 0 0 1

 ∼ · · · ∼
 1 0 −2/3 0 0

0 1 −2/3 0 −1
0 0 0 1 0


=⇒ RowSp(A) = span{(1, 0,−2/3, 0, 0), (0, 1,−2/3, 0,−1), (0, 0, 0, 1, 0)}

=⇒ dim RowSp(A) = (# basis vectors in RowSp(A)) = 3

=⇒ ColSp(A) = span


 1

4
1

 ,

 2
2
−1

 ,

 1
−2

0


=⇒ dim ColSp(A) = (# basis vectors in ColSp(A)) = 3
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More on the Row Space & Column Space
In the previous examples, the row & column space had the same dimension!
This is no accident:

Theorem
(Row Space & Column Space have the Same Dimension)

Let A ∈ Rm×n. Then, dim ColSp(A) = dim RowSp(A)

PROOF: See textbook if interested. (it’s long & technical)

An alternative method to find bases for the row space & column space of
matrix A is to consider the transpose of A:

Corollary
(Finding Bases for Row Space & Column Space via Transposing)

Let A ∈ Rm×n. Then:

(i) Row space of A is Column Space of AT : RowSp(A) = ColSp(AT)
(ii) Column space of A is Row Space of AT : ColSp(A) = RowSp(AT)

This provides 2 methods to find the basis of a subspace spanned by vectors.
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Finding Basis of Subspace Spanned by Many Vectors

WEX 4-6-3: Let S = {(−1,−1, 2), (1, 1, 3), (−2,−2, 2)} ≡ {~v1,~v2,~v3} ⊆ R3.

Find a basis for the subspace of R3 spanned by S.
Find the dimension of span(S).
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Finding Basis of Subspace Spanned by Many Vectors

WEX 4-6-3: Let S = {(−1,−1, 2), (1, 1, 3), (−2,−2, 2)} ≡ {~v1,~v2,~v3} ⊆ R3.

Find a basis B for the subspace of R3 spanned by S.
Find the dimension of span(S).

(Method One)

Form matrix A with ~v1,~v2,~v3 as its rows & find the row space of A:

A =

 ~v1
~v2
~v3

 =

 −1 −1 2
1 1 3
−2 −2 2

 ∼ · · · ∼
 1 1 0

0 0 1
0 0 0


=⇒ RowSp(A) = span{pivot rows of RREF(A)} = span{(1, 1, 0), (0, 0, 1)}

=⇒ Basis B = {basis vectors of RowSp(A)} = {(1, 1, 0), (0, 0, 1)}

=⇒ dim(span{S}) = (# basis vectors in B) = 2
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Finding Basis of Subspace Spanned by Many Vectors

WEX 4-6-3: Let S = {(−1,−1, 2), (1, 1, 3), (−2,−2, 2)} ≡ {~v1,~v2,~v3} ⊆ R3.

Find a basis B for the subspace of R3 spanned by S.
Find the dimension of span(S).

(Method Two)

Form matrix A with ~v1,~v2,~v3 as its columns & find the column space of A:

A =

 | | |
~v1 ~v2 ~v3
| | |

 =

 −1 1 −2
−1 1 −2

2 3 2

 ∼ · · · ∼
 1 0 8/5

0 1 −2/5
0 0 0


=⇒ ColSp(A) = span{pivot columns of A} = span


 −1
−1

2

 ,

 1
1
3


=⇒ Basis B = {basis vectors of ColSp(A)} =


 −1
−1

2

 ,

 1
1
3


=⇒ dim(span{S}) = (# basis vectors in B) = 2
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Both Methods give completely different Bases!!

In the previous example, S = {(−1,−1, 2), (1, 1, 3), (−2,−2, 2)}

Method One: Basis B1 = {(1, 1, 0), (0, 0, 1)}
Method Two: Basis B2 = {(−1,−1, 2), (1, 1, 3)}

At first glance, it seems unlikely that bases B1,B2 span the same subspace!!

But in fact, they do span the same subspace as each vector in S is a linear
combination of vectors in each basis:

B1:
(−1,−1, 2) = (−1)(1, 1, 0) + (2)(0, 0, 1)

(1, 1, 3) = (1)(1, 1, 0) + (3)(0, 0, 1)
(−2,−2, 2) = (−2)(1, 1, 0) + (2)(0, 0, 1)

B2:
(−1,−1, 2) = (1)(−1,−1, 2) + (0)(1, 1, 3)

(1, 1, 3) = (0)(−1,−1, 2) + (1)(1, 1, 3)
(−2,−2, 2) =

( 8
5

)
(−1,−1, 2) +

(
− 2

5

)
(1, 1, 3)
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Rank of a Matrix (Definition)

Definition
(Rank of a Matrix)

Let A ∈ Rm×n.
Then the rank of A is the dimension of the column (row) space of A:

rank(A) := dim ColSp(A) = dim RowSp(A)

Corollary
(Rank of a Matrix)

Let A ∈ Rm×n.
Then the rank of A is simply the # of pivots in RREF(A).
Matrix A has full row rank ⇐⇒ rank(A) = m
Matrix A has full column rank ⇐⇒ rank(A) = n
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The 1st Example Revisited in terms of Rank

WEX 4-6-4: Let A =

 0 2
−4 −3

2 2

.

Find the rank of A & dimension of the row space & column space.

Perform Gauss-Jordan on A: 0 2
−4 −3

2 2

 ∼
 2 2
−4 −3

0 2

 ∼
 1 1
−4 −3

0 2

 ∼
 1 1

0 1
0 2

 ∼
 1 0

0 1
0 0


=⇒ rank(A) = (# pivots in RREF(A)) = 2

=⇒ dim RowSp(A) = rank(A) = 2
=⇒ dim ColSp(A) = rank(A) = 2

Since every column of RREF(A) has a pivot, A has full column rank
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The 2nd Example Revisited in terms of Rank

WEX 4-6-5: Let A =

 1 2 −2 1 −2
4 2 −4 −2 −2
1 −1 0 0 1

.

Find the rank of A & dimension of the row space & column space.

Perform Gauss-Jordan on A: 1 2 −2 1 −2
4 2 −4 −2 −2
1 −1 0 0 1

 ∼ · · · ∼
 1 0 −2/3 0 0

0 1 −2/3 0 −1
0 0 0 1 0


=⇒ rank(A) = (# pivots in RREF(A)) = 3

=⇒ dim RowSp(A) = rank(A) = 3
=⇒ dim ColSp(A) = rank(A) = 3

Since every row of RREF(A) has a pivot, A has full row rank
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Matrix-Vector Multiplication & Linear Combinations

A matrix-vector product can be a viewed as a linear combination of the
columns of the matrix:

Ax =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 x1
x2
x3

 =

 x1a11 + x2a12 + x3a13
x1a21 + x2a22 + x3a23
x1a31 + x2a32 + x3a33


(

Undo Vector Addition
and Scalar Multiplication

)
= x1

 a11
a21
a31

+ x2

 a12
a22
a32

+ x1

 a13
a23
a33


—– OR WHEN MATRIX IS PARTITIONED INTO COLUMN VECTORS —–

Ax =

 | | |
v1 v2 v3
| | |

 x1
x2
x3

 = x1v1 + x2v2 + x3v3
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Column Space & Linear System Consistency

Column spaces provide qualitive information about linear systems:

Theorem
(Column Space & Linear System Consistency)

Let A ∈ Rm×n and b ∈ Rn.
Then m× n linear system Ax = b is consistent ⇐⇒ b ∈ ColSp(A)

i.e. Ax = b has solution(s) ⇐⇒ b is a linear combination of the columns of A.

For instance, if A =

[
1 −1
1 1

]
, then b =

[
2
3

]
∈ ColSp(A) since

[A | b] =
[

1 −1 2
1 1 3

]
Gauss−Jordan−−−−−−−−→

[
1 0 5/2
0 1 1/2

]
= [RREF(A) | b∗]

=⇒
[

2
3

]
=

(
5
2

)[
1
1

]
+

(
1
2

)[
−1

1

]
=⇒ b is a linear combination of the columns of A
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Column Space & Linear System Consistency

Column spaces provide qualitive information about linear systems:

Theorem
(Column Space & Linear System Consistency)

Let A ∈ Rm×n and b ∈ Rn.
Then m× n linear system Ax = b is consistent ⇐⇒ b ∈ ColSp(A)

i.e. Ax = b has solution(s) ⇐⇒ b is a linear combination of the columns of A.

For instance, if A =

[
1 1
2 2

]
, then b =

[
2
3

]
6∈ ColSp(A) since

[A | b] =
[

1 1 2
2 2 3

]
Gauss−Jordan−−−−−−−−→

[
1 1 2
0 0 −1

]
← CONTRADICTION!

=⇒ b is not a linear combination of the columns of A
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PART II

PART II:

NULLSPACE OF A MATRIX
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The Null Space of a Matrix (Definition)

Definition
(Null Space of a Matrix)

Let A ∈ Rm×n. Then the null space of A is the set of all solutions to A~x = ~0:

NulSp(A) := {~x ∈ Rn : A~x = ~0}

Theorem
(Null Space is a Subspace)

Let A ∈ Rm×n. Then NulSp(A) is a subspace of Rn.
The nullity of A is the dimension of its null space: nullity(A) := dim NulSp(A)
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The Nullspace of a Matrix (Definition)

Definition
(Nullspace of a Matrix)

Let A ∈ Rm×n. Then the nullspace of A is the set of all solutions to A~x = ~0:

NulSp(A) := {~x ∈ Rn : A~x = ~0}

Theorem
(Nullspace of a Matrix is a Subspace)

Let A ∈ Rm×n. Then NulSp(A) is a subspace of Rn.
The nullity of A is the dimension of its nullspace: nullity(A) := dim NulSp(A)

PROOF: Clearly, NulSp(A) ⊆ Rn and A~0 = ~0 =⇒ ~0 ∈ NulSp(A)

Let ~u,~v ∈ NulSp(A) and c ∈ R. Then A~u = ~0 and A~v = ~0 and
A(~u +~v) = A~u + A~v = ~0 +~0 = ~0 and A(c~v) = c(A~v) = c~0 = ~0
=⇒ A(~u +~v) = ~0 =⇒ ~u +~v ∈ NulSp(A) =⇒ NulSp(A) is closed under VA
=⇒ A(c~v) = ~0 =⇒ c~v ∈ NulSp(A) =⇒ NulSp(A) is closed under SM

∴ NulSp(A) is a subspace of Rn. QED
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Finding the Nullspace & Nullity of a Matrix (Procedure)

Proposition
(Finding the Nullspace & Nullity of a Matrix)

TASK: Find the nullspace & nullity of matrix A ∈ Rm×n.

(1) Perform Gauss-Jordan Elimination on augemented matrix [A|~0]
(2) Assign unique parameters to the free variables.

(3) Form resulting solution ~x to A~x = ~0 by interpreting rows of [RREF(A)|~0]
(4) ”Undo” vector addition by placing each parameter into its own vector.

(5) ”Undo” scalar multiplication by factoring the parameter from each vector.

(?) The resulting vectors form a basis for the nullspace of A.
(?) nullity(A) = # basis vectors for the nullspace of A.
(?) If the only solution to A~x = ~0 is ~0, then NulSp(A) = {~0} & nullity(A) = 0.
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The 1st Example Revisited in terms of Nullspace

WEX 4-6-6: Let A =

 0 2
−4 −3

2 2

. Find the nullspace of A and its dimension.

Josh Engwer (TTU) Row Space, Column Space, Null Space, Rank 12 October 2015 27 / 47



The 1st Example Revisited in terms of Nullspace

WEX 4-6-6: Let A =

 0 2
−4 −3

2 2

. Find the nullspace of A and its dimension.

Perform Gauss-Jordan on augmented matrix [A|~0]:

[A|~0] =

 0 2 0
−4 −3 0

2 2 0

 ∼ · · · ∼
 1 0 0

0 1 0
0 0 0

 = [RREF(A)|~0]
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The 1st Example Revisited in terms of Nullspace

WEX 4-6-6: Let A =

 0 2
−4 −3

2 2

. Find the nullspace of A and its dimension.

Perform Gauss-Jordan on augmented matrix [A|~0]:

[A|~0] =

 0 2 0
−4 −3 0

2 2 0

 ∼ · · · ∼
 1 0 0

0 1 0
0 0 0

 = [RREF(A)|~0]

Every column of RREF(A) has a pivot =⇒ there are no free variables.

Interpreting the rows of [RREF(A)|~0] yields:

 1x1 + 0x2 = 0
0x1 + 1x2 = 0
0x1 + 0x2 = 0

=⇒ x1 = 0, x2 = 0 =⇒ ~x =

[
x1
x2

]
=

[
0
0

]
=⇒ NulSp(A) =

{[
0
0

]}
Since the nullspace only contains the zero vector,
nullity(A) = dim NulSp(A) = 0

Josh Engwer (TTU) Row Space, Column Space, Null Space, Rank 12 October 2015 29 / 47



The 2nd Example Revisited in terms of Nullspace

WEX 4-6-7: Let A =

 1 2 −2 1 −2
4 2 −4 −2 −2
1 −1 0 0 1

. Find its nullspace & nullity.
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The 2nd Example Revisited in terms of Nullspace

WEX 4-6-7: Let A =

 1 2 −2 1 −2
4 2 −4 −2 −2
1 −1 0 0 1

. Find its nullspace & nullity.

Perform Gauss-Jordan on augmented matrix [A|~0]: 1 2 −2 1 −2 0
4 2 −4 −2 −2 0
1 −1 0 0 1 0

 ∼ · · · ∼
 1 0 −2/3 0 0 0

0 1 −2/3 0 −1 0
0 0 0 1 0 0
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The 2nd Example Revisited in terms of Nullspace

WEX 4-6-7: Let A =

 1 2 −2 1 −2
4 2 −4 −2 −2
1 −1 0 0 1

. Find its nullspace & nullity.

Perform Gauss-Jordan on augmented matrix [A|~0]: 1 2 −2 1 −2 0
4 2 −4 −2 −2 0
1 −1 0 0 1 0

 ∼ · · · ∼
 1 0 −2/3 0 0 0

0 1 −2/3 0 −1 0
0 0 0 1 0 0


Columns 1,2,4 of RREF(A) have pivots =⇒ x3, x5 are free variables.

Assign unique parameters to the free variables: x3 = s, x5 = t

Interpret rows of [RREF(A)|~0]:

 x1 − 2
3 x3 = 0 =⇒ x1 = 2

3 s
x2 − 2

3 x3 − x5 = 0 =⇒ x2 = 2
3 s + t

x4 = 0 =⇒ x4 = 0

Josh Engwer (TTU) Row Space, Column Space, Null Space, Rank 12 October 2015 32 / 47



The 2nd Example Revisited in terms of Nullspace

WEX 4-6-7: Let A =

 1 2 −2 1 −2
4 2 −4 −2 −2
1 −1 0 0 1

. Find its nullspace & nullity.

Perform Gauss-Jordan on augmented matrix [A|~0]: 1 2 −2 1 −2 0
4 2 −4 −2 −2 0
1 −1 0 0 1 0

 ∼ · · · ∼
 1 0 −2/3 0 0 0

0 1 −2/3 0 −1 0
0 0 0 1 0 0



=⇒ ~x =


x1
x2
x3
x4
x5

 =


2
3 s

2
3 s + t

s
0
t

 =


2
3 s
2
3 s
s
0
0

+


0
t
0
0
t

 = s


2/3
2/3

1
0
0

+ t


0
1
0
0
1



=⇒ NulSp(A) = span




2/3
2/3

1
0
0

 ,


0
1
0
0
1


 =⇒ nullity(A) = 2
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Nullspace & Solving Linear Systems

Theorem
(Form of Solutions to a Non-homogeneous Linear System)

Let A ∈ Rm×n where m ≤ n (i.e. A is square or ”short & wide” rectangular)

Let non-homogeneous linear system A~x = ~b have infinitely many solutions.

Then, the solution to A~x = ~b is ~x = ~xp +~xh where

~xp is the particular solution to A~x = ~b
~xh is the homogeneous solution to A~x = ~0
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Nullspace & Solving Linear Systems

Theorem
(Form of Solutions to a Non-homogeneous Linear System)

Let A ∈ Rm×n where m ≤ n (i.e. A is square or ”short & wide” rectangular)

Let non-homogeneous linear system A~x = ~b have infinitely many solutions.

Then, the solution to A~x = ~b is ~x = ~xp +~xh where

~xp is the particular solution to A~x = ~b
~xh is the homogeneous solution to A~x = ~0

PROOF: Let ~x and ~xp solve the non-homogeneous linear system.
Then, A~x = ~b and ~xp = ~b

Let ~xh = ~x−~xp. Then, A~xh = A(~x−~xp) = A~x− A~xp = ~b− ~b = ~0

=⇒ A~xh = ~0
=⇒ ~x = ~xp +~xh QED
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Nullspace & Solving Linear Systems (Example)

WEX 4-6-8: Find all solution vectors of non-homongeneous linear system x1 + 2x2 − 2x3 + x4 − 2x5 = 6
4x1 + 2x2 − 4x3 − 2x4 − 2x5 = 6

x1 − x2 + x5 = 3
in terms of ~xp & ~xh.
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Nullspace & Solving Linear Systems (Example)

WEX 4-6-8: Find all solution vectors of non-homongeneous linear system x1 + 2x2 − 2x3 + x4 − 2x5 = 6
4x1 + 2x2 − 4x3 − 2x4 − 2x5 = 6

x1 − x2 + x5 = 3
in terms of ~xp & ~xh.

Perform Gauss-Jordan on augmented matrix [A|~b]:

[A|~b] =

 1 2 −2 1 −2 6
4 2 −4 −2 −2 6
1 −1 0 0 1 3

 ∼
 1 0 −2/3 0 0 3

0 1 −2/3 0 −1 0
0 0 0 1 0 3
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Nullspace & Solving Linear Systems (Example)

WEX 4-6-8: Find all solution vectors of non-homongeneous linear system x1 + 2x2 − 2x3 + x4 − 2x5 = 6
4x1 + 2x2 − 4x3 − 2x4 − 2x5 = 6

x1 − x2 + x5 = 3
in terms of ~xp & ~xh.

Perform Gauss-Jordan on augmented matrix [A|~b]:

[A|~b] =

 1 2 −2 1 −2 6
4 2 −4 −2 −2 6
1 −1 0 0 1 3

 ∼
 1 0 −2/3 0 0 3

0 1 −2/3 0 −1 0
0 0 0 1 0 3


Columns 1,2,4 of RREF(A) have pivots =⇒ x3, x5 are free variables.

Assign unique parameters to the free variables: x3 = s, x5 = t

Interpret rows:

 x1 − 2
3 x3 = 3 =⇒ x1 = 3 + 2

3 s
x2 − 2

3 x3 − x5 = 0 =⇒ x2 = 2
3 s + t

x4 = 3 =⇒ x4 = 3
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Nullspace & Solving Linear Systems (Example)

WEX 4-6-8: Find all solution vectors of non-homongeneous linear system x1 + 2x2 − 2x3 + x4 − 2x5 = 6
4x1 + 2x2 − 4x3 − 2x4 − 2x5 = 6

x1 − x2 + x5 = 3
in terms of ~xp & ~xh.

Perform Gauss-Jordan on augmented matrix [A|~b]:

[A|~b] =

 1 2 −2 1 −2 6
4 2 −4 −2 −2 6
1 −1 0 0 1 3

 ∼
 1 0 −2/3 0 0 3

0 1 −2/3 0 −1 0
0 0 0 1 0 3


Interpret rows:

 x1 − 2
3 x3 = 3 =⇒ x1 = 3 + 2

3 s
x2 − 2

3 x3 − x5 = 0 =⇒ x2 = 2
3 s + t

x4 = 3 =⇒ x4 = 3

~x =


3 + 2

3 s
2
3 s + t

s
3
t

 =


3
0
0
3
0

+


2
3 s
2
3 s
s
0
0

+


0
t
0
0
t

 =


3
0
0
3
0

+ s


2/3
2/3
1
0
0

+ t


0
1
0
0
1
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Nullspace & Solving Linear Systems (Example)

WEX 4-6-8: Find all solution vectors of non-homongeneous linear system x1 + 2x2 − 2x3 + x4 − 2x5 = 6
4x1 + 2x2 − 4x3 − 2x4 − 2x5 = 6

x1 − x2 + x5 = 3
in terms of ~xp & ~xh.

Perform Gauss-Jordan on augmented matrix [A|~b]:

[A|~b] =

 1 2 −2 1 −2 6
4 2 −4 −2 −2 6
1 −1 0 0 1 3

 ∼
 1 0 −2/3 0 0 3

0 1 −2/3 0 −1 0
0 0 0 1 0 3



~x =


3
0
0
3
0


︸ ︷︷ ︸

~xp

+ s


2/3
2/3

1
0
0


︸ ︷︷ ︸

~xh

+ t


0
1
0
0
1


︸ ︷︷ ︸

~xh
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PART III

PART III:

EQUIVALENT CONDITIONS FOR VARIOUS TYPES OF
MATRICES
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Equivalent Conditions for Invertible Square Matrices

Theorem
(Equivalent Conditions for Invertible Square Matrices)

Let A ∈ Rn×n be a square matrix. Then the following are equivalent:

RREF(A) has n pivots
rank(A) = n

A has full row rank & full column rank
The rows of A are linearly independent. Ditto for the columns of A.
dim RowSp(A) = n

dim ColSp(A) = n

nullity(A) = 0 & NulSp(A) = {~0}
Linear system A~x = ~0 has only the trivial solution ~x = ~0
Linear system A~x = ~b has unique solution A−1~b for every ~b ∈ Rn

A is invertible (non-singular)
det(A) 6= 0
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Equivalent Conditions for Singular Square Matrices

Theorem
(Equivalent Conditions for Singular Square Matrices)

Let A ∈ Rn×n be a square matrix and r < n.
Then the following are equivalent:

RREF(A) has r pivots
rank(A) = r

The rows of A are linearly dependent. Ditto for the columns of A.
dim RowSp(A) = r

dim ColSp(A) = r

nullity(A) = n− r

Linear system A~x = ~0 has infinitely solutions ~x = ~xh

Linear system A~x = ~b has infinitely many solutions only if ~b ∈ ColSp(A)

Linear system A~x = ~b has no solution only if ~b 6∈ ColSp(A)
A is not invertible (singular)
det(A) = 0
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Equivalent Conditions for ”Short & Wide” Matrices

Theorem
(Equivalent Conditions for ”Short & Wide” Rectangular Matrices)

Let A ∈ Rm×n be a ”short & wide” rectangular matrix (m < n).
Then the following are equivalent:

RREF(A) has m pivots
rank(A) = m

A has full row rank
The rows of A are linearly independent.
dim RowSp(A) = m

dim ColSP(A) = m

nullity(A) = n− m

Linear system A~x = ~0 has infinitely solutions ~x = ~xh

Linear system A~x = ~b has infinitely solutions ~x = ~xp +~xh
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Equivalent Conditions for ”Tall & Thin” Matrices

Theorem
(Equivalent Conditions for ”Tall & Thin” Rectangular Matrices)

Let A ∈ Rm×n be a ”tall & thin” rectangular matrix (m > n).
Then the following are equivalent:

RREF(A) has n pivots
rank(A) = n

A has full column rank
The columns of A are linearly independent.
dim RowSp(A) = n

dim ColSp(A) = n

nullity(A) = 0 & NulSp(A) = {~0}
Linear system A~x = ~0 has only the trivial solution ~x = ~0
Linear system A~x = ~b has unique solution only if ~b ∈ ColSp(A)

Linear system A~x = ~b has no solution only if ~b 6∈ ColSp(A)
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Equivalent Conditions for Rectangular Matrices

Theorem
(Equivalent Conditions for All Rectangular Matrices)

Let A ∈ Rm×n be a rectangular matrix and r < min{m, n} (i.e. r < m & r < n)
Then the following are equivalent:

RREF(A) has r pivots
rank(A) = r

dim ColSp(A) = r

dim RowSp(A) = r

nullity(A) = n− r

Linear system A~x = ~0 has infinitely solutions ~x = ~xh

Linear system A~x = ~b has zero, one, or infinitely many solutions
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Fin

Fin.
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