Change of Basis: Coord. Vector, Transition Matrix Linear Algebra

Josh Engwer

TTU

16 October 2015

Josh Engwer (TTU)

Change of Basis: Coord. Vector, Transition Matrix

16 October 2015 1 / 15

Coordinate Vector Relative to a Basis (Definition)

Definition

(Coordinate Vector Relative to a Basis)

Let *V* be a <u>finite-dimensional</u> vector space.

Let $\mathcal{B} = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n}$ be an ordered basis for *V*.

Let vector $\mathbf{x} \in V$ s.t. $\mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_n \mathbf{v}_n$

Then the coordinate vector of \mathbf{x} relative to basis \mathcal{B} is

$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix} = (c_1, c_2, \dots, c_n)^T$$

where c_1, c_2, \ldots, c_n are the **coordinates of x relative to basis** \mathcal{B} .

 $[\mathbf{x}]_{\mathcal{B}}$ is also known as the \mathcal{B} -coordinate vector of \mathbf{x} . c_1, c_2, \ldots, c_n are also known as the \mathcal{B} -coordinates of \mathbf{x} . The order of the vectors in the basis is critical, hence the term <u>ordered</u> basis.

Josh Engwer (TTU)

Standard Basis for common Vector Spaces

Recall the standard bases for common vector spaces:

VECTOR SPACE	STANDARD BASIS	DIM.
\mathbb{R}^2	$\mathcal{E} = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\} \equiv \left\{ \widehat{\mathbf{i}}, \widehat{\mathbf{j}} \right\}$	2
\mathbb{R}^3	$\mathcal{E} = \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\} \equiv \left\{ \widehat{\mathbf{i}}, \ \widehat{\mathbf{j}}, \ \widehat{\mathbf{k}} \right\}$	3
\mathbb{R}^4	$\mathcal{E} = \left\{ \left[egin{array}{c} 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \$	4
\mathbb{R}^5	$\mathcal{E} = \left\{ \begin{bmatrix} 1\\0\\0\\0\\0\\0\end{bmatrix}, \begin{bmatrix} 0\\1\\0\\0\\0\\0\end{bmatrix}, \begin{bmatrix} 0\\0\\1\\0\\0\\0\end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1\\0\\0\\1\\0\end{bmatrix}, \begin{bmatrix} 0\\0\\0\\0\\1\\0\\0\\1\\0\end{bmatrix} \right\}$	5

<u>NOTE:</u> For this section, only vector spaces \mathbb{R}^2 , \mathbb{R}^3 , \mathbb{R}^4 , \mathbb{R}^5 will be considered.

Josh Engwer (TTU)

Converting $[x]_{\mathcal{B}} \rightarrow [x]_{\mathcal{E}}$ (Procedure)

Proposition

(Converting $[\mathbf{x}]_{\mathcal{B}} \to [\mathbf{x}]_{\mathcal{E}}$) Let *V* be a <u>finite-dimensional</u> vector space. Let $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be an ordered basis for *V*. Let $\mathcal{E} = \{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ be the ordered <u>standard basis</u> for *V*.

Let
$$[\mathbf{x}]_{\mathcal{B}} = (c_1, c_2, \dots, c_n)^T$$
.
Then $[\mathbf{x}]_{\mathcal{E}} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n \leftarrow (Simplify \ linear \ combination)$
WEX 4-7-1: Let $\mathcal{B} = \left\{ \begin{bmatrix} -2 \\ -1 \end{bmatrix}, \begin{bmatrix} 3 \\ 4 \end{bmatrix} \right\} \equiv \{\mathbf{v}_1, \mathbf{v}_2\}$. Find $[\mathbf{x}]_{\mathcal{E}} \ if \ [\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} -5 \\ 3 \end{bmatrix}$.
 $[\mathbf{x}]_{\mathcal{B}} = (-5)\mathbf{v}_1 + (3)\mathbf{v}_2 = (-5)\begin{bmatrix} -2 \\ -1 \end{bmatrix} + (3)\begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 19 \\ 17 \end{bmatrix}$
 $= (19)\begin{bmatrix} 1 \\ 0 \end{bmatrix} + (17)\begin{bmatrix} 0 \\ 1 \end{bmatrix} = (19)\mathbf{e}_1 + (17)\mathbf{e}_2 \implies [\mathbf{x}]_{\mathcal{E}} = \begin{bmatrix} 19 \\ 17 \end{bmatrix}$

Converting $[x]_{\mathcal{E}} \to [x]_{\mathcal{B}}$ (Motivation)

Consider the following example:

Let basis
$$\mathcal{B} = \left\{ \begin{bmatrix} -2 \\ -1 \end{bmatrix}, \begin{bmatrix} 3 \\ 4 \end{bmatrix} \right\} \equiv \{\mathbf{v}_1, \mathbf{v}_2\} \subseteq \mathbb{R}^2$$
. Find $[\mathbf{x}]_{\mathcal{B}}$ if $[\mathbf{x}]_{\mathcal{E}} = \begin{bmatrix} -3 \\ -2 \end{bmatrix}$.

Recall the standard basis for \mathbb{R}^2 : $\mathcal{E} = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\} \equiv \{\mathbf{e}_1, \mathbf{e}_2\} \subseteq \mathbb{R}^2$

$$(\mathbf{x} \text{ in } \mathcal{B}\text{-coordinates}) = \begin{bmatrix} -3 \\ -2 \end{bmatrix} = (\mathbf{x} \text{ in } \mathcal{E}\text{-coordinates})$$

$$\implies [\mathbf{x}]_{\mathcal{B}} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 = \begin{bmatrix} -3 \\ -2 \end{bmatrix} = (-3)\mathbf{e}_1 + (-2)\mathbf{e}_2 = [\mathbf{x}]_{\mathcal{E}}$$

$$\implies c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 = \begin{bmatrix} -3 \\ -2 \end{bmatrix} \implies \begin{bmatrix} | & | \\ \mathbf{v}_1 & \mathbf{v}_2 \\ | & | \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} -3 \\ -2 \end{bmatrix}$$

 $\implies \begin{bmatrix} -2 & 3 \\ -1 & 4 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} -3 \\ -2 \end{bmatrix} \implies \begin{bmatrix} -2 & 3 & -3 \\ -1 & 4 & -2 \end{bmatrix} \implies [\mathcal{B} \mid [\mathbf{x}]_{\mathcal{E}}]$ So, to find c_1, c_2 , perform Gauss-Jordan on augmented matrix $[\mathcal{B} \mid [\mathbf{x}]_{\mathcal{E}}]$.

Converting $[x]_{\mathcal{E}} \rightarrow [x]_{\mathcal{B}}$ (Procedure)

Proposition

(Converting $[x]_{\mathcal{E}} \to [x]_{\mathcal{B}})$

Let V be a <u>finite-dimensional</u> vector space.

Let $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be an ordered basis for *V*.

Let $\mathcal{E} = \{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ be the ordered <u>standard basis</u> for *V*.

<u>GIVEN</u>: Vector \mathbf{x} in standard basis coordinates: $[\mathbf{x}]_{\mathcal{E}}$

<u>TASK:</u> Write vector \mathbf{x} in non-std basis \mathcal{B} -coordinates: $[\mathbf{x}]_{\mathcal{B}}$

(1)
$$[\mathcal{B} \mid [\mathbf{x}]_{\mathcal{E}}] \xrightarrow{Gauss-Jordan} [I \mid [\mathbf{x}]_{\mathcal{B}}]$$

$$\begin{array}{l} \underline{\textbf{WEX 4-7-2:}} \text{ Let } \mathcal{B} = \left\{ \begin{bmatrix} -2\\ -1 \end{bmatrix}, \begin{bmatrix} 3\\ 4 \end{bmatrix} \right\} \equiv \{\mathbf{v}_1, \mathbf{v}_2\}. \text{ Find } [\mathbf{x}]_{\mathcal{B}} \text{ if } [\mathbf{x}]_{\mathcal{E}} = \begin{bmatrix} -3\\ -2 \end{bmatrix}. \\ \left[\mathcal{B} \mid [\mathbf{x}]_{\mathcal{E}} \right] = \begin{bmatrix} -2 & 3\\ -1 & 4 \end{bmatrix} \begin{bmatrix} -3\\ -2 \end{bmatrix} \xrightarrow{Gauss-Jordan} \left[\begin{bmatrix} 1\\ 0\\ 1 \end{bmatrix} \begin{bmatrix} 0\\ -1/5 \end{bmatrix} \right] \\ \therefore \quad [\mathbf{x}]_{\mathcal{E}} = \begin{bmatrix} -3\\ -2 \end{bmatrix} = \left(\frac{6}{5} \right) \mathbf{v}_1 + \left(-\frac{1}{5} \right) \mathbf{v}_2 \implies \left[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 6/5\\ -1/5 \end{bmatrix} \right]$$

Proposition

(Converting $[x]_{\mathcal{B}} \to [x]_{\mathcal{B}'})$

Let *V* be a <u>finite-dimensional</u> vector space. Let $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be an ordered basis for *V*. Let $\mathcal{B}' = \{\mathbf{v}'_1, \mathbf{v}'_2, \dots, \mathbf{v}'_n\}$ be another ordered basis for *V*. Let $\mathcal{E} = \{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ be the ordered <u>standard basis</u> for *V*. <u>GIVEN</u>: Vector \mathbf{x} in non-std basis \mathcal{B} -coordinates: $[\mathbf{x}]_{\mathcal{B}}$ <u>TASK</u>: Write vector \mathbf{x} in non-std basis \mathcal{B}' -coordinates: $[\mathbf{x}]_{\mathcal{B}'}$ (1) Convert $[\mathbf{x}]_{\mathcal{B}} \to [\mathbf{x}]_{\mathcal{E}}$ (2) $[\mathcal{B}' \mid [\mathbf{x}]_{\mathcal{E}}] \xrightarrow{Gauss-Jordan} [I \mid [\mathbf{x}]_{\mathcal{B}'}]$

Converting $[x]_{\mathcal{B}} \to [x]_{\mathcal{B}'}$ (Example)

$$\underline{\text{WEX 4-7-3:}} \text{ Let } \mathcal{B} = \left\{ \begin{bmatrix} -2\\ -1 \end{bmatrix}, \begin{bmatrix} 3\\ 4 \end{bmatrix} \right\} \text{ and } \mathcal{B}' = \left\{ \begin{bmatrix} -1\\ 2 \end{bmatrix}, \begin{bmatrix} 2\\ 3 \end{bmatrix} \right\}.$$

$$\text{Find } [\mathbf{x}]_{\mathcal{B}'} \text{ if } [\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 5\\ 3 \end{bmatrix}.$$

Recall the standard basis for \mathbb{R}^2 : $\mathcal{E} = \left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\} \equiv \{\mathbf{e}_1, \mathbf{e}_2\} \subseteq \mathbb{R}^2$

1st, convert
$$[\mathbf{x}]_{\mathcal{B}} \to [\mathbf{x}]_{\mathcal{E}}$$
: $[\mathbf{x}]_{\mathcal{B}} = (5) \begin{bmatrix} -2\\ -1 \end{bmatrix} + (3) \begin{bmatrix} 3\\ 4 \end{bmatrix} = \begin{bmatrix} -1\\ 7 \end{bmatrix} = [\mathbf{x}]_{\mathcal{E}}$
 $[\mathcal{B}' \mid [\mathbf{x}]_{\mathcal{E}}] = \begin{bmatrix} -1 & 2\\ 2 & 3 \end{bmatrix} \begin{bmatrix} -1\\ 7 \end{bmatrix} \xrightarrow{Gauss-Jordan} \begin{bmatrix} 1\\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1/7/7\\ 5/7 \end{bmatrix}$
 $\therefore [\mathbf{x}]_{\mathcal{E}} = \begin{bmatrix} -1\\ 7 \end{bmatrix} = \begin{pmatrix} 17\\ 7 \end{pmatrix} \begin{bmatrix} -1\\ 2 \end{bmatrix} + \begin{pmatrix} 5\\ 7 \end{pmatrix} \begin{bmatrix} 2\\ 3 \end{bmatrix} \implies [\mathbf{x}]_{\mathcal{B}'} = \begin{bmatrix} 17/7\\ 5/7 \end{bmatrix}$

Transition Matrix (Definition)

Definition

(Transition Matrix)

Let $\mathcal{B}, \mathcal{B}'$ be two ordered bases for <u>finite-dimensional</u> vector space V. Let vector $\mathbf{x} \in V$. Then:

The transition matrix $\underset{\mathcal{B}' \leftarrow \mathcal{B}}{P}$ from \mathcal{B} to \mathcal{B}' satisfies $\underset{\mathcal{B}' \leftarrow \mathcal{B}}{P}[\mathbf{x}]_{\mathcal{B}} = [\mathbf{x}]_{\mathcal{B}'}$ The transition matrix $\underset{\mathcal{B} \leftarrow \mathcal{B}'}{P}$ from \mathcal{B}' to \mathcal{B} satisfies $\underset{\mathcal{B} \leftarrow \mathcal{B}'}{P}[\mathbf{x}]_{\mathcal{B}'} = [\mathbf{x}]_{\mathcal{B}}$

Corollary

(Transition Matrices are Square)

Let $\mathcal{B}, \mathcal{B}'$ be two ordered bases for <u>finite-dimensional</u> vector space V.

Then transition matrices $\underset{B'\leftarrow B}{P}$ and $\underset{B\leftarrow B'}{P}$ are square matrices.

<u>REMARK</u>: <u>**Never**</u> use the book's notation for transition matrix: P or P^{-1}

Inverse of a Transition Matrix

The inverse of a transition matrix is precisely what one would expect:

Theorem

(Inverse of a Transition Matrix)

Let $\mathcal{B}, \mathcal{B}'$ be two ordered bases for <u>finite-dimensional</u> vector space V.

Then
$$\left(egin{smallmatrix} P \\ \mathcal{B}\leftarrow\mathcal{B}' \end{array}
ight)^{-1} = egin{smallmatrix} P \\ \mathcal{B}'\leftarrow\mathcal{B} \end{array}$$
 and $\left(egin{smallmatrix} P \\ \mathcal{B}'\leftarrow\mathcal{B} \end{array}
ight)^{-1} = egin{smallmatrix} P \\ \mathcal{B}\leftarrow\mathcal{B}' \end{array}$

$$\begin{array}{l} \underline{\mathsf{PROOF:}} \quad [\mathbf{x}]_{\mathcal{B}} = \underset{\mathcal{B} \leftarrow \mathcal{B}'}{P} [\mathbf{x}]_{\mathcal{B}'} = \underset{\mathcal{B} \leftarrow \mathcal{B}'}{P} \left(\underset{\mathcal{B}' \leftarrow \mathcal{B}}{P} [\mathbf{x}]_{\mathcal{B}} \right) \\ \implies \quad [\mathbf{x}]_{\mathcal{B}} = \left(\underset{\mathcal{B} \leftarrow \mathcal{B}'}{P} \right) \left(\underset{\mathcal{B}' \leftarrow \mathcal{B}}{P} \right) [\mathbf{x}]_{\mathcal{B}} \\ \implies \quad \left(\underset{\mathcal{B} \leftarrow \mathcal{B}'}{P} \right) \left(\underset{\mathcal{B}' \leftarrow \mathcal{B}}{P} \right) = I \qquad [\text{Since } \mathbf{v} = A\mathbf{v} \ \forall \mathbf{v} \implies A = I] \\ \implies \quad \left(\underset{\mathcal{B} \leftarrow \mathcal{B}'}{P} \right)^{-1} = \underset{\mathcal{B}' \leftarrow \mathcal{B}}{P} \quad \text{and} \quad \left(\underset{\mathcal{B}' \leftarrow \mathcal{B}}{P} \right)^{-1} = \underset{\mathcal{B} \leftarrow \mathcal{B}'}{P} \end{array}$$

QED

So how to systematically find a transition matrix between bases??

Theorem

(Finding the Transition Matrix)

<u>GIVEN</u>: Ordered bases $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ and $\mathcal{B}' = \{\mathbf{v}'_1, \mathbf{v}'_2, \dots, \mathbf{v}'_n\}$ for \mathbb{R}^n .

<u>TASK:</u> Find the transition matrix $\underset{\mathcal{B}' \leftarrow \mathcal{B}}{P}$ from \mathcal{B} to \mathcal{B}' .

(1)
$$[\mathcal{B}' \mid \mathcal{B}] \xrightarrow{Gauss-Jordan} [I \mid \underset{\mathcal{B}' \leftarrow \mathcal{B}}{P}]$$

Finding the Transition Matrix (Example)

WEX 4-7-4: Let
$$\mathcal{B} = \left\{ \begin{bmatrix} -2\\ -1 \end{bmatrix}, \begin{bmatrix} 3\\ 4 \end{bmatrix} \right\}$$
 and $\mathcal{B}' = \left\{ \begin{bmatrix} -1\\ 2 \end{bmatrix}, \begin{bmatrix} 2\\ 3 \end{bmatrix} \right\}$.
(a) Find the transition matrix $\underset{\mathcal{B}' \leftarrow \mathcal{B}}{P}$. (b) Find $[\mathbf{x}]_{\mathcal{B}'}$ if $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 5\\ 3 \end{bmatrix}$.
(c) Find the transition matrix $\underset{\mathcal{B} \leftarrow \mathcal{B}'}{P}$. (d) Find $[\mathbf{x}]_{\mathcal{B}}$ if $[\mathbf{x}]_{\mathcal{B}'} = \begin{bmatrix} -2\\ 5 \end{bmatrix}$.

Finding the Transition Matrix (Example)

WEX 4-7-4: Let
$$\mathcal{B} = \left\{ \begin{bmatrix} -2\\ -1 \end{bmatrix}, \begin{bmatrix} 3\\ 4 \end{bmatrix} \right\}$$
 and $\mathcal{B}' = \left\{ \begin{bmatrix} -1\\ 2 \end{bmatrix}, \begin{bmatrix} 2\\ 3 \end{bmatrix} \right\}$.
(a) Find the transition matrix $\underset{\mathcal{B}' \leftarrow \mathcal{B}'}{P}$. (b) Find $[\mathbf{x}]_{\mathcal{B}'}$ if $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 5\\ 3 \end{bmatrix}$.
(c) Find the transition matrix $\underset{\mathcal{B} \leftarrow \mathcal{B}'}{P}$. (d) Find $[\mathbf{x}]_{\mathcal{B}}$ if $[\mathbf{x}]_{\mathcal{B}'} = \begin{bmatrix} -2\\ 5 \end{bmatrix}$.

(a) Apply Gauss-Jordan to augmented matrix $[\mathcal{B}' \mid \mathcal{B}]$:

$$\begin{bmatrix} \mathcal{B}' \mid \mathcal{B} \end{bmatrix} = \begin{bmatrix} -1 & 2 & | & -2 & 3 \\ 2 & 3 & | & -1 & 4 \end{bmatrix} \xrightarrow{Gauss-Jordan} \begin{bmatrix} \boxed{1} & 0 & | & \frac{4}{7} & -\frac{1}{7} \\ 0 & \boxed{1} & | & -\frac{5}{7} & \frac{10}{7} \end{bmatrix} = \begin{bmatrix} I \mid P \\ \mathcal{B}' \leftarrow \mathcal{B} \end{bmatrix}$$

(b) $[\mathbf{x}]_{\mathcal{B}'} = \underset{\mathcal{B}' \leftarrow \mathcal{B}}{P} [\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 4/7 & -1/7 \\ -5/7 & 10/7 \end{bmatrix} \begin{bmatrix} 5 \\ 3 \end{bmatrix} = \begin{bmatrix} 17/7 \\ 5/7 \end{bmatrix}$

Finding the Transition Matrix (Example)

WEX 4-7-4: Let
$$\mathcal{B} = \left\{ \begin{bmatrix} -2\\ -1 \end{bmatrix}, \begin{bmatrix} 3\\ 4 \end{bmatrix} \right\}$$
 and $\mathcal{B}' = \left\{ \begin{bmatrix} -1\\ 2 \end{bmatrix}, \begin{bmatrix} 2\\ 3 \end{bmatrix} \right\}$.
(a) Find the transition matrix $\underset{\mathcal{B}' \leftarrow \mathcal{B}'}{P}$. (b) Find $[\mathbf{x}]_{\mathcal{B}'}$ if $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 5\\ 3 \end{bmatrix}$.
(c) Find the transition matrix $\underset{\mathcal{B} \leftarrow \mathcal{B}'}{P}$. (d) Find $[\mathbf{x}]_{\mathcal{B}}$ if $[\mathbf{x}]_{\mathcal{B}'} = \begin{bmatrix} -2\\ 5 \end{bmatrix}$.

(c) Apply Gauss-Jordan to augmented matrix $[\mathcal{B} \mid \mathcal{B}']$:

$$\begin{bmatrix} \mathcal{B} \mid \mathcal{B}' \end{bmatrix} = \begin{bmatrix} -2 & 3 \\ -1 & 4 \end{bmatrix} \begin{bmatrix} -1 & 2 \\ 2 & 3 \end{bmatrix} \xrightarrow{Gauss - Jordan} \begin{bmatrix} \boxed{1} & 0 \\ 0 & \boxed{1} \end{bmatrix} \begin{bmatrix} 2 & \frac{1}{5} \\ 1 & \frac{4}{5} \end{bmatrix} = \begin{bmatrix} I \mid P \\ \mathcal{B} \leftarrow \mathcal{B}' \end{bmatrix}$$

(d)
$$\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}} = \underbrace{P}_{\mathcal{B} \leftarrow \mathcal{B}'} \begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}'} = \begin{bmatrix} 2 & 1/5 \\ 1 & 4/5 \end{bmatrix} \begin{bmatrix} -2 \\ 5 \end{bmatrix} = \begin{bmatrix} -3 \\ 2 \end{bmatrix}$$

Fin.