Vectors: Norms, Dot Products, Projections Linear Algebra

Josh Engwer

TTU

26 October 2015

Josh Engwer (TTU)

Vectors: Norms, Dot Products, Projections

Norms of Vectors in \mathbb{R}^2 (Definition)

The **norm** of a vector is simply its length (AKA magnitude):

Definition

The **norm** of vector $\mathbf{v} = (v_1, v_2)^T \in \mathbb{R}^2$ is defined to be

$$||\mathbf{v}|| := \sqrt{v_1^2 + v_2^2}$$

Josh Engwer (TTU)

Norms of Vectors in $\mathbb{R}^3 \& \mathbb{R}^n$ (Definition)

The **norm** can be extended to vectors in higher dimensions:

Definition

The **norm** of vector $\mathbf{v} = (v_1, v_2, v_3)^T \in \mathbb{R}^3$ is defined to be

$$|\mathbf{v}|| := \sqrt{v_1^2 + v_2^2 + v_3^2}$$

Definition

The **norm** of vector $\mathbf{v} = (v_1, v_2, \cdots, v_n)^T \in \mathbb{R}^n$ is defined to be

$$||\mathbf{v}|| := \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

Unit Vectors & Direction Vectors

Definition

A unit vector \hat{v} is a vector with norm one. A unit vector (AKA direction vector) for vector v is defined to be

$$\widehat{\mathbf{v}} := \frac{\mathbf{v}}{||\mathbf{v}||}$$

Dot Product in \mathbb{R}^2 & \mathbb{R}^3 (Definition)

Definition

(Dot Product in \mathbb{R}^2)

The **dot product** of vectors $\mathbf{v} = (v_1, v_2)^T$ and $\mathbf{w} = (w_1, w_2)^T$ is defined by:

$$\mathbf{v} \cdot \mathbf{w} := \mathbf{v}^T \mathbf{w} = \sum_{k=1}^2 v_k w_k = v_1 w_1 + v_2 w_2$$

Definition

(Dot Product in \mathbb{R}^3)

The dot product of vectors $\mathbf{v} = (v_1, v_2, v_3)^T$ and $\mathbf{w} = (w_1, w_2, w_3)^T$ is:

$$\mathbf{v} \cdot \mathbf{w} := \mathbf{v}^T \mathbf{w} = \sum_{k=1}^3 v_k w_k = v_1 w_1 + v_2 w_2 + v_3 w_3$$

<u>REMARK:</u> Notice that the dot product of two vectors is a scalar.

The dot product operation can be extended to vectors in higher dimensions:

Definition

(Dot Product in \mathbb{R}^n)

The **dot product** of vectors $\mathbf{v} = (v_1, v_2, \cdots, v_n)^T$ and $\mathbf{w} = (w_1, w_2, \cdots, w_n)^T$ is:

$$\mathbf{v} \cdot \mathbf{w} := \mathbf{v}^T \mathbf{w} = \sum_{k=1}^n v_k w_k = v_1 w_1 + v_2 w_2 + \dots + v_n w_n$$

<u>REMARK:</u> Notice that the dot product of two vectors is a **scalar**.

Corollary

(Properties of Dot Products)

Let vectors $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ and scalar $\alpha \in \mathbb{R}$. Then:

$$\begin{array}{ll} (DP1) & \mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{v} \\ (DP2) & \alpha(\mathbf{v} \cdot \mathbf{w}) = (\alpha \mathbf{v}) \cdot \mathbf{w} = \mathbf{v} \cdot (\alpha \mathbf{w}) \\ (DP3) & \vec{\mathbf{0}} \cdot \mathbf{v} = \mathbf{v} \cdot \vec{\mathbf{0}} = 0 \\ (DP4) & \mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w} \\ (DP5) & \mathbf{v} \cdot \mathbf{v} = ||\mathbf{v}||^2 \end{array}$$

Commutativity of Dot Product Associativity of Dot Product Dot Product with $\vec{0}$ is Zero Scalar Distributivity of Dot Product over VA Dot Product-Norm Relationship

Corollary

(Properties of Dot Products)

Let vectors $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ and scalar $\alpha \in \mathbb{R}$. Then:

(DP1)	$\mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{v}$
(<i>DP2</i>)	$\alpha(\mathbf{v} \cdot \mathbf{w}) = (\alpha \mathbf{v}) \cdot \mathbf{w} = \mathbf{v} \cdot (\alpha \mathbf{w})$
(DP3)	$\vec{0} \cdot \mathbf{v} = \mathbf{v} \cdot \vec{0} = 0$
(DP4)	$\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$
(<i>DP5</i>)	$\mathbf{v} \cdot \mathbf{v} = \mathbf{v} ^2$

Commutativity of Dot Product Associativity of Dot Product Dot Product with $\vec{0}$ is Zero Scalar Distributivity of Dot Product over VA Dot Product-Norm Relationship

PROOF: Let
$$\mathbf{v} = (v_1, v_2, \dots, v_n)^T$$
 and $\mathbf{w} = (w_1, w_2, \dots, w_n)^T$. Then:
(DP1) $\mathbf{v} \cdot \mathbf{w} := v_1 w_1 + v_2 w_2 + \dots + v_n w_n = w_1 v_1 + w_2 v_2 + \dots + w_n v_n := \mathbf{w} \cdot \mathbf{v}$
(DP5) $\mathbf{v} \cdot \mathbf{v} := v_1^2 + v_2^2 + \dots + v_n^2 = \left(\sqrt{v_1^2 + v_2^2 + \dots + v_n^2}\right)^2 := ||\mathbf{v}||^2$
QED

Dot Product (Coordinate-Free Definition)

Definition

Let θ be the smallest positive angle between vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$. Then:

 $\mathbf{v} \cdot \mathbf{w} = ||\mathbf{v}|| ||\mathbf{w}|| \cos \theta$

where $heta \in [0,\pi]$

Alternative notation for the angle between vectors v, w : θ_{νw}

Josh Engwer (TTU)

Dot Product (Orthogonality)

Theorem

Vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ are orthogonal $\iff \mathbf{v} \perp \mathbf{w} \iff \mathbf{v} \cdot \mathbf{w} = 0$

Dot Product (Orthogonality)

Theorem

Vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ are orthogonal $\iff \mathbf{v} \perp \mathbf{w} \iff \mathbf{v} \cdot \mathbf{w} = 0$

PROOF:

 $\mathbf{v}, \mathbf{w} \text{ are orthogonal} \iff \theta = \pi/2 \iff \mathbf{v} \cdot \mathbf{w} = ||\mathbf{v}|| ||\mathbf{w}|| \cos(\pi/2) = 0$ QED

Dot Product (Geometric Interpretation)

Project w onto v.

Drop perpendicular line from w to v.

Josh Engwer (TTU)

Project w onto v.

Drop perpendicular line from w to v.

Josh Engwer (TTU)

Project w onto v.

Project v onto w.

Project v onto w.

Drop perpendicular line from v to w.

Project v onto w.

Project w onto v.

Project w onto v.

Draw line extension through v.

Project w onto v.

Drop perpendicular line from w to line extension.

Project w onto v.

Project u onto n.

Project u onto n.

Draw line extension through n.

Josh Engwer (TTU)

Project u onto n.

Drop perpendicular line from **u** to line extension.

Josh Engwer (TTU)

Project u onto n.

Determine a formula for $proj_w v$, the **projection** of vector v onto vector w.

Determine a formula for $proj_w v$, the **projection** of vector v onto vector w.

Notice that
$$(\text{proj}_{\mathbf{w}}\mathbf{v}) \mid \mid \mathbf{w} \implies \text{proj}_{\mathbf{w}}\mathbf{v} = k\mathbf{w}$$
, where $k \in \mathbb{R}$.

Determine value of scalar k in terms of given vectors $\mathbf{v} \& \mathbf{w}$.

Form vector $\mathbf{v} - k\mathbf{w}$.

Determine value of scalar k in terms of given vectors $\mathbf{v} \& \mathbf{w}$.

Notice that $(\mathbf{v} - k\mathbf{w}) \perp \mathbf{w}$.

$$\implies$$
 $(\mathbf{v} - k\mathbf{w}) \cdot \mathbf{w} = 0$

$$\implies$$
 v · **w** - (k**w**) · **w** = 0

$$\implies \mathbf{v} \cdot \mathbf{w} - k(\mathbf{w} \cdot \mathbf{w}) = 0$$

$$\implies$$
 v · **w** = k (**w** · **w**)

$$\implies k = \frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}}$$

$$\implies k = \frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}}$$
$$\implies \operatorname{proj}_{\mathbf{w}} \mathbf{v} = k \mathbf{w} = \left(\frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}}\right) \mathbf{w}$$

Orthogonal Projection onto a Vector (Formula)

Definition

(Orthogonal Projection onto a Vector)

Let vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$.

Then the (orthogonal) projection of v onto w is defined by:

$$\mathsf{proj}_{\mathbf{w}}\mathbf{v} := \left(rac{\mathbf{v}\cdot\mathbf{w}}{\mathbf{w}\cdot\mathbf{w}}
ight)\mathbf{w} = \left(rac{\mathbf{v}^T\mathbf{w}}{\mathbf{w}^T\mathbf{w}}
ight)\mathbf{w}$$

Fin.