Vectors: Norms, Dot Products, Projections Linear Algebra

Josh Engwer

TTU
26 October 2015

Norms of Vectors in $\mathbb{R}^{2} \quad$ (Definition)

The norm of a vector is simply its length (AKA magnitude):

Definition

The norm of vector $\mathbf{v}=\left(v_{1}, v_{2}\right)^{T} \in \mathbb{R}^{2}$ is defined to be

$$
\|\mathbf{v}\|:=\sqrt{v_{1}^{2}+v_{2}^{2}}
$$

Norms of Vectors in $\mathbb{R}^{3} \& \mathbb{R}^{n}$ (Definition)

The norm can be extended to vectors in higher dimensions:

Definition

The norm of vector $\mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right)^{T} \in \mathbb{R}^{3}$ is defined to be

$$
\|\mathbf{v}\|:=\sqrt{v_{1}^{2}+v_{2}^{2}+v_{3}^{2}}
$$

Definition

The norm of vector $\mathbf{v}=\left(v_{1}, v_{2}, \cdots, v_{n}\right)^{T} \in \mathbb{R}^{n}$ is defined to be

$$
\|\mathbf{v}\|:=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}}
$$

Unit Vectors \& Direction Vectors

Definition

A unit vector $\widehat{\mathbf{v}}$ is a vector with norm one.
A unit vector (AKA direction vector) for vector \mathbf{v} is defined to be

$$
\widehat{\mathbf{v}}:=\frac{\mathbf{v}}{\|\mathbf{v}\|}
$$

Dot Product in $\mathbb{R}^{2} \& \mathbb{R}^{3} \quad$ (Definition)

Definition

(Dot Product in \mathbb{R}^{2})
The dot product of vectors $\mathbf{v}=\left(v_{1}, v_{2}\right)^{T}$ and $\mathbf{w}=\left(w_{1}, w_{2}\right)^{T}$ is defined by:

$$
\mathbf{v} \cdot \mathbf{w}:=\mathbf{v}^{T} \mathbf{w}=\sum_{k=1}^{2} v_{k} w_{k}=v_{1} w_{1}+v_{2} w_{2}
$$

Definition

(Dot Product in \mathbb{R}^{3})
The dot product of vectors $\mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right)^{T}$ and $\mathbf{w}=\left(w_{1}, w_{2}, w_{3}\right)^{T}$ is:

$$
\mathbf{v} \cdot \mathbf{w}:=\mathbf{v}^{T} \mathbf{w}=\sum_{k=1}^{3} v_{k} w_{k}=v_{1} w_{1}+v_{2} w_{2}+v_{3} w_{3}
$$

REMARK: Notice that the dot product of two vectors is a scalar.

Dot Product in $\mathbb{R}^{n} \quad$ (Definition)

The dot product operation can be extended to vectors in higher dimensions:

Definition

(Dot Product in \mathbb{R}^{n})
The dot product of vectors $\mathbf{v}=\left(v_{1}, v_{2}, \cdots, v_{n}\right)^{T}$ and $\mathbf{w}=\left(w_{1}, w_{2}, \cdots, w_{n}\right)^{T}$ is:

$$
\mathbf{v} \cdot \mathbf{w}:=\mathbf{v}^{T} \mathbf{w}=\sum_{k=1}^{n} v_{k} w_{k}=v_{1} w_{1}+v_{2} w_{2}+\cdots+v_{n} w_{n}
$$

REMARK: Notice that the dot product of two vectors is a scalar.

Dot Product (Properties)

Corollary

(Properties of Dot Products)
Let vectors $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$ and scalar $\alpha \in \mathbb{R}$. Then:

$(D P 1)$	$\mathbf{v} \cdot \mathbf{w}=\mathbf{w} \cdot \mathbf{v}$		
$(D P 2)$	$\alpha(\mathbf{v} \cdot \mathbf{w})=(\alpha \mathbf{v}) \cdot \mathbf{w}=\mathbf{v} \cdot(\alpha \mathbf{w})$		
(DP3)	$\overrightarrow{\mathbf{0}} \cdot \mathbf{v}=\mathbf{v} \cdot \overrightarrow{\mathbf{0}}=0$		
(DP4)	$\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}$		
$(D P 5)$	$\mathbf{v} \cdot \mathbf{v}=\\|\mathbf{v}\\|^{2}$		

Commutativity of Dot Product Associativity of Dot Product Dot Product with $\overrightarrow{\boldsymbol{0}}$ is Zero Scalar Distributivity of Dot Product over VA Dot Product-Norm Relationship

Dot Product (Properties)

Corollary

(Properties of Dot Products)

Let vectors $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$ and scalar $\alpha \in \mathbb{R}$. Then:

$($ DP1 $)$	$\mathbf{v} \cdot \mathbf{w}=\mathbf{w} \cdot \mathbf{v}$		
$(D P 2)$	$\alpha(\mathbf{v} \cdot \mathbf{w})=(\alpha \mathbf{v}) \cdot \mathbf{w}=\mathbf{v} \cdot(\alpha \mathbf{w})$		
$(D P 3)$	$\overrightarrow{\mathbf{0}} \cdot \mathbf{v}=\mathbf{v} \cdot \overrightarrow{\mathbf{0}}=0$		
(DP4)	$\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}$		
(DP5)	$\mathbf{v} \cdot \mathbf{v}=\\|\mathbf{v}\\|^{2}$		

Commutativity of Dot Product Associativity of Dot Product Dot Product with $\overrightarrow{\mathbf{0}}$ is Zero Scalar Distributivity of Dot Product over VA Dot Product-Norm Relationship

PROOF: Let $\mathbf{v}=\left(v_{1}, v_{2}, \cdots, v_{n}\right)^{T}$ and $\mathbf{w}=\left(w_{1}, w_{2}, \cdots, w_{n}\right)^{T}$. Then:
(DP1) $\mathbf{v} \cdot \mathbf{w}:=v_{1} w_{1}+v_{2} w_{2}+\cdots+v_{n} w_{n}=w_{1} v_{1}+w_{2} v_{2}+\cdots+w_{n} v_{n}:=\mathbf{w} \cdot \mathbf{v}$
(DP5) $\mathbf{v} \cdot \mathbf{v}:=v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}=\left(\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}}\right)^{2}:=\|\mathbf{v}\|^{2}$
QED

Dot Product (Coordinate-Free Definition)

Definition

Let θ be the smallest positive angle between vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$. Then:

$$
\mathbf{v} \cdot \mathbf{w}=\|\mathbf{v}\|\|\mathbf{w}\| \cos \theta \quad \text { where } \theta \in[0, \pi]
$$

- Alternative notation for the angle between vectors $\mathbf{v}, \mathbf{w}: \theta_{v w}$

Dot Product (Orthogonality)

Theorem

Vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$ are orthogonal $\Longleftrightarrow \mathbf{v} \perp \mathbf{w} \Longleftrightarrow \mathbf{v} \cdot \mathbf{w}=0$

Dot Product (Orthogonality)

Theorem

Vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$ are orthogonal $\Longleftrightarrow \mathbf{v} \perp \mathbf{w} \Longleftrightarrow \mathbf{v} \cdot \mathbf{w}=0$
PROOF:
\mathbf{v}, \mathbf{w} are orthogonal $\Longleftrightarrow \theta=\pi / 2 \Longleftrightarrow \mathbf{v} \cdot \mathbf{w}=\|\mathbf{v}\|\|\mathbf{w}\| \cos (\pi / 2)=0 \quad$ QED

Dot Product (Geometric Interpretation)

θ is acute
$\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathrm{v}}>0$

θ is 90°
$\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}=0$

θ is obtuse
$\overrightarrow{\mathrm{u}} \cdot \overrightarrow{\mathrm{v}}<0$

Orthogonal Projection onto a Vector (Example 1)

Project wonto v.

Drop perpendicular line from \mathbf{w} to \mathbf{v}.

Orthogonal Projection onto a Vector (Example 1)

Project wonto v.

Drop perpendicular line from \mathbf{w} to \mathbf{v}.

Orthogonal Projection onto a Vector (Example 1)

Project wonto v.

Orthogonal Projection onto a Vector (Example 2)

Project \mathbf{v} onto w.

Orthogonal Projection onto a Vector (Example 2)

Project \mathbf{v} onto w.

Drop perpendicular line from \mathbf{v} to \mathbf{w}.

Orthogonal Projection onto a Vector (Example 2)

Project \mathbf{v} onto w.

Orthogonal Projection onto a Vector (Example 3)

Project \mathbf{w} onto \mathbf{v}.

Orthogonal Projection onto a Vector (Example 3)

Project w onto \mathbf{v}.

Draw line extension through \mathbf{v}.

Orthogonal Projection onto a Vector (Example 3)

Project wonto \mathbf{v}.

Drop perpendicular line from \mathbf{w} to line extension.

Orthogonal Projection onto a Vector (Example 3)

Project \mathbf{w} onto \mathbf{v}.

Orthogonal Projection onto a Vector (Example 4)

Project u onto \mathbf{n}.

$\overrightarrow{\mathrm{n}}$

Orthogonal Projection onto a Vector (Example 4)

Project u onto \mathbf{n}.

Draw line extension through n.

Orthogonal Projection onto a Vector (Example 4)

Project u onto \mathbf{n}.

Drop perpendicular line from u to line extension.

Orthogonal Projection onto a Vector (Example 4)

Project u onto \mathbf{n}.

Orthogonal Projection onto a Vector (Derivation)

Determine a formula for $\operatorname{proj}_{\mathbf{w}} \mathbf{v}$, the projection of vector \mathbf{v} onto vector \mathbf{w}.

Orthogonal Projection onto a Vector (Derivation)

Determine a formula for $\operatorname{proj}_{\mathbf{w}} \mathbf{v}$, the projection of vector \mathbf{v} onto vector \mathbf{w}.

Notice that $\left(\operatorname{proj}_{\mathbf{w}} \mathbf{v}\right) \| \mathbf{w} \Longrightarrow \operatorname{proj}_{\mathbf{w}} \mathbf{v}=k \mathbf{w}$, where $k \in \mathbb{R}$.

Orthogonal Projection onto a Vector (Derivation)

Determine value of scalar k in terms of given vectors $\mathbf{v} \& \mathbf{w}$.

Form vector $\mathbf{v}-k \mathbf{w}$.

Orthogonal Projection onto a Vector (Derivation)

Determine value of scalar k in terms of given vectors $\mathbf{v} \& \mathbf{w}$.

Notice that $(\mathbf{v}-k \mathbf{w}) \perp \mathbf{w}$.

Orthogonal Projection onto a Vector (Derivation)

Determine value of scalar k in terms of given vectors \mathbf{v} \& w.

$\Longrightarrow(\mathbf{v}-k \mathbf{w}) \cdot \mathbf{w}=0$

Orthogonal Projection onto a Vector (Derivation)

Determine value of scalar k in terms of given vectors \mathbf{v} \& w.

$\Longrightarrow \mathbf{v} \cdot \mathbf{w}-(k \mathbf{w}) \cdot \mathbf{w}=0$

Orthogonal Projection onto a Vector (Derivation)

Determine value of scalar k in terms of given vectors \mathbf{v} \& w.

$\Longrightarrow \mathbf{v} \cdot \mathbf{w}-k(\mathbf{w} \cdot \mathbf{w})=0$

Orthogonal Projection onto a Vector (Derivation)

Determine value of scalar k in terms of given vectors $\mathbf{v} \& \mathbf{w}$.

$\Longrightarrow \mathbf{v} \cdot \mathbf{w}=k(\mathbf{w} \cdot \mathbf{w})$

Orthogonal Projection onto a Vector (Derivation)

Determine value of scalar k in terms of given vectors $\mathbf{v} \& \mathbf{w}$.

$\Longrightarrow k=\frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}}$

Orthogonal Projection onto a Vector (Derivation)

Determine value of scalar k in terms of given vectors $\mathbf{v} \& \mathbf{w}$.

$\Longrightarrow k=\frac{\mathbf{v} \cdot \mathbf{W}}{\mathbf{W} \cdot \mathbf{w}}$
$\Longrightarrow \operatorname{proj}_{\mathbf{w}} \mathbf{v}=k \mathbf{w}=\left(\frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}}\right) \mathbf{w}$

Orthogonal Projection onto a Vector (Formula)

Definition

(Orthogonal Projection onto a Vector)
Let vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$.
Then the (orthogonal) projection of \mathbf{v} onto \mathbf{w} is defined by:

$$
\operatorname{proj}_{\mathbf{w}} \mathbf{v}:=\left(\frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}}\right) \mathbf{w}=\left(\frac{\mathbf{v}^{T} \mathbf{w}}{\mathbf{w}^{T} \mathbf{w}}\right) \mathbf{w}
$$

Fin.

