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Inner Product Space (Definition)
An inner product is the notion of a dot product for general vector spaces:

Definition
(Inner Product)

Let V be a vector space. Let vectors u, v,w ∈ V and let scalar α ∈ R.

An inner product on V is a function 〈·, ·〉 : V → R satisfying the following:

(IPS1) 〈u,u〉 ≥ 0 Non-negativity of Self-Inner Product
(IPS2) 〈u,u〉 = 0 ⇐⇒ u = ~0 Only ~0 has Self-Inner Product of Zero
(IPS3) 〈u, v〉 = 〈v,u〉 Commutativity of Inner Product
(IPS4) 〈αu, v〉 = α〈u, v〉 Inner Product of SM is SM of Inner Product
(IPS5) 〈u, v + w〉 = 〈u, v〉+ 〈u,w〉 Distributivity of VA over Inner Product

(IPS1)-(IPS5) are called the inner product axioms.

Definition
(Inner Product Space)

A vector space V with an inner product 〈·, ·〉 is called an inner product space.
A compact notation for an inner product space is: (V, 〈·, ·〉)
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Inner Product Spaces (Standard Examples)

INNER
PRODUCT

SPACE
PROTOTYPE ”VECTORS”

Rn u = (u1, . . . , un)
T , v = (v1, . . . , vn)

T

Rm×n A =

 a11 · · · a1n
...

. . .
...

am1 · · · amn

 , B =

 b11 · · · b1n
...

. . .
...

bm1 · · · bmn


Pn

p(t) = p0 + p1t + p2t2 + · · ·+ pntn

q(t) = q0 + q1t + q2t2 + · · ·+ qntn

scalars t1, . . . , tn+1 ∈ R

C[a, b] f (x), g(x)
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Inner Product Spaces (Standard Examples)

INNER
PRODUCT

SPACE
INNER PRODUCT 〈·, ·〉

Rn 〈u, v〉 :=
n∑

k=1

ukvk = u1v1 + · · ·+ unvn = uTv

Rm×n 〈A,B〉 :=
m∑

i=1

n∑
j=1

aijbij = a11b11 + · · ·+ amnbmn

Pn 〈p, q〉 :=
n+1∑
k=1

p(tk)q(tk) = p(t1)q(t1) + · · ·+ p(tn+1)q(tn+1)

C[a, b] 〈f , g〉 :=
∫ b

a
f (x)g(x) dx

REMARK: Other inner products are possible with these spaces but such
inner products won’t be considered in this course.
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Inner Product (Properties)

Every inner product has the following basic properties by virtue of satisfying
the inner product axioms:

Corollary
(Properties of Inner Products)

Let (V, 〈·, ·〉) be an inner product space.

Let ”vectors” u, v,w ∈ V and scalar α ∈ R. Then:
(IP1) 〈u, αv〉 = α〈u, v〉 Associativity of Inner Product
(IP2) 〈u,~0〉 = 〈~0,u〉 = 0 Inner Product with ~0 is Zero Scalar
(IP3) 〈u + v,w〉 = 〈u,w〉+ 〈v,w〉 Distributivity of Inner Product over VA
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Inner Product (Properties)
Every inner product has the following basic properties by virtue of satisfying
the inner product axioms:

Corollary
(Properties of Inner Products)

Let (V, 〈·, ·〉) be an inner product space.

Let ”vectors” u, v,w ∈ V and scalar α ∈ R. Then:
(IP1) 〈u, αv〉 = α〈u, v〉 Associativity of Inner Product
(IP2) 〈u,~0〉 = 〈~0,u〉 = 0 Inner Product with ~0 is Zero Scalar
(IP3) 〈u + v,w〉 = 〈u,w〉+ 〈v,w〉 Distributivity of Inner Product over VA

PROOF:

(IP1) 〈u, αv〉 IPS3
= 〈αv,u〉 IPS4

= α〈v,u〉 IPS3
= α〈u, v〉

(IP2) 〈u,~0〉 CI~0
= 〈u, v + (−v)〉 IPS5

= 〈u, v〉+ 〈u,−v〉 IP1
= 〈u, v〉 − 〈u, v〉 = 0

〈~0,u〉 = 〈(0)v,u〉 IPS4
= (0)〈v,u〉 = 0

(IP3) 〈u + v,w〉 IPS3
= 〈w,u + v〉 IPS5

= 〈w,u〉+ 〈w, v〉 IPS3
= 〈u,w〉+ 〈v,w〉 QED
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Norms Induced by Inner Products (Definition)
It turns out that the concept of a norm carries over to general vector spaces.

For inner product spaces, a norm can be naturally defined via inner product:

Definition
(Norm Induced by an Inner Product)

Let (V, 〈·, ·〉) be an inner product space. Let ”vector” u ∈ V.

The norm || · || induced by the inner product 〈·, ·〉 of V is defined to be:

||u|| :=
√
〈u,u〉

Definition
(Normed Vector Space)

A vector space V with a norm || · || is called an normed vector space.
A compact notation for a normed vector space is: (V, || · ||)

REMARK: Other norms are possible and show up in Numerical Analysis
and certain applications, but only the induced norm will be considered here.
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Norms Induced by Inner Products (Properties)

All norms (including induced norms) satisfy the following norm axioms:

Corollary
(Norm Axioms for a Normed Vector Space)

Let (V, || · ||) be a normed vector space.

Let ”vector” u, v ∈ V and scalar α ∈ R. Then the following are satisfied:
(NM1) ||u|| ≥ 0 Non-Negativity of Norm
(NM2) ||u|| = 0 ⇐⇒ u = ~0 Only ~0 has Norm Zero
(NM3) ||αu|| = |α|||u|| Norm of Scalar Multiple
(NM4) ||u + v|| ≤ ||u||+ ||v|| Triangle Inequality for Norm

REMARK: In (NM3), the absolute value bars around α are needed since α
may be negative but norms are always non-negative (NM1).

REMARK: Other norms are possible and show up in Numerical Analysis
and certain applications, but only the norm induced by an inner product will be
considered in this course.
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Metrics Induced by Norms (Properties)
For vector spaces, the notion of ”distance” is expressed in terms of norm:

Definition
(Metric Induced by a Norm)

Let (V, || · ||) be a normed vector space. Let ”vector” u ∈ V.

The metric d(·, ·) induced by the norm || · || of V is defined to be:

d(u, v) := ||u− v|| (read ”the metric between u & v”)

Corollary
(Metric Axioms for a Vector Space)

Let (V, || · ||) be a normed vector space and d(·, ·) be the induced metric.

Let ”vector” u, v,w ∈ V and scalar α ∈ R. Then the following are satisfied:
(MT1) d(u, v) ≥ 0 Non-Negativity of Metric
(MT2) d(u, v) = 0 ⇐⇒ u = v Zero Metric means both ”Vectors” are =
(MT3) d(u, v) = d(v,u) Commutativity of Metric
(MT4) d(u,w) ≤ d(u, v) + d(v,w) Triangle Inequality for Metric
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Non-induced Metrics on R2 (Examples)

Only induced metrics (e.g. Euclidean metric on R2) will be considered.
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Inner Product Spaces (Standard Examples)

INNER
PRODUCT

SPACE

INNER
PRODUCT
〈·, ·〉

INDUCED
NORM
|| · ||

INDUCED
METRIC

d(·, ·)

Rn 〈u, v〉 :=
n∑

k=1

ukvk ||u|| :=
√
〈u,u〉 d(u, v) := ||u− v||

Rm×n 〈A,B〉 :=
m∑

i=1

n∑
j=1

aijbij ||A|| :=
√
〈A,A〉 d(A,B) := ||A− B||

Pn 〈p, q〉 :=
n+1∑
k=1

p(tk)q(tk) ||p|| :=
√
〈p, p〉 d(p, q) := ||p− q||

C[a, b] 〈f , g〉 :=
∫ b

a
f (x)g(x) dx ||f || :=

√
〈f , f 〉 d(f , g) := ||f − g||

REMARK: The inner product, norm, metric of Rn shown above are
sometimes called the euclidean inner product, norm, metric.
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Inner Product (Coordinate-Free Definition)
Just as with dot product, inner products have coordinate-free definitions:

Definition
Let (V, 〈·, ·〉) be an inner product space with induced norm || · ||.
Let ”vectors” v,w ∈ V. Then:

〈v,w〉 = ||v||||w|| cos θ where θ ∈ [0, π]
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Inner Product (Orthogonality)

Orthogonality carries over to general inner product spaces:

Theorem
Let (V, 〈·, ·〉) be an inner product space. Let ”vectors” v,w ∈ V. Then:

”Vectors” v,w are orthogonal ⇐⇒ v ⊥ w ⇐⇒ 〈v,w〉 = 0
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Orthogonal Projection onto a ”Vector” (Formula)

Orthogonal projections carry over to general inner product spaces:

Definition
(Orthogonal Projection onto a ”Vector”)

Let (V, 〈·, ·〉) be an inner product space. Let ”vectors” v,w ∈ V s.t. w 6= ~0.

Then the (orthogonal) projection of v onto w is defined by:

projwv :=

(
〈v,w〉
〈w,w〉

)
w
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Fin

Fin.
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