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(Orthogonal) Projection onto a Subspace (Definition)

Projy-v

N
>
W2

(Above): In R3, plane W is subspace spanned by orthogonal vectors w; & w,.

(Projection onto a Subspace)
Let ©Q ={qi,q,-.-,q,} be an orthogonal basis for subspace W of R".
Then the (orthogonal) projection of vector v € R" onto subspace W is:

ProjyV := Proj,um(o)V = Projg, v + Projg,v+--- + projy v
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Orthogonal Sets & Orthogonal Subspaces (Definition)

Orthogonality generalizes to subsets & subspaces of inner product space R”:

Definition
(Orthogonal Sets)

Sets E, E, C R" are orthogonal, denoted E, | E,, if

V{VQ =0 Vv, € E,Vv, € E,

i.e. vectors in one set are orthogonal to vectors in the other set.

Definition
(Orthogonal Subspaces)

Subspaces S, S, of R” are orthogonal, denoted §; | S, if

viva=0 Vv, €8,V €S8

i.e. vectors in one subspace are orthogonal to vectors in the other subspace.
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Orthogonal Subspaces

Unless one of the subspaces contains only the zero vector, there are infinitely
many vectors in each subspace to test for orthogonality!!

Fortunately, since inner product space R” is finite-dimensional, it suffices to
test the basis vectors for the subspaces:

(Bases of Orthogonal Subspaces Theorem)

Let subspace S| C R" with basis B; = {u;,uy,...,u,}.
Let subspace S, C R" with basis B, = {vi,v2,...,Vp}.

Then S1 LS <— B LB

PROOF:

S, = span(B;) = {linear combinations ciu; + cous + - - - + cully = D1y iU}
S, = span(B,) = {linear combinations k;vi + kv + - + k,v, = >0 kv }

Si LS = (T ew) (Zlekj"j) =0 <= (T, cul) (Zle kj"j) =0

”gl)‘: Z:nzl Z;:l Cikjlll-TVj =0 «— lliTVj =0Vi,j — B LB, QED
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Orthogonal Complements (Definition)

Definition
(Orthogonal Complements)

Let W be a subspace of Euclidean inner product space (R”, (-, -)2).
Then the orthogonal complement of W, denoted W+, is

Wt = {wt e R": (w,wh), =0 Ywe W}
i.e. Wt is the set of all vectors in R that are orthogonal to all vectors in W.
Clearly, by definition, W L W+.
SPECIAL CASES: (R")* ={0} AND {0}‘ =R"

4 -3 2
For instance, if W = span -8 ,then Wt = span 0 } , { 1 ] }
3 4

(4] (3] = (4]
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Finding the Orthogonal Complement (Motivation)

Supppose subspace W = span(B) where basis B = {w;,w,,...,w,}.
How to systematically find the orthogonal complement W-?

Suppose vectoru € W-.  Then:

wiu=0 vwe W (Defn of orth. complement)
< wlu=0 Vwe B (Previous Theorem)

— wiu=0,--, wu=0
— =11 T
— : ul|=1]0
e L
AT

— ATu=0
<= u € NulSp(AT) (Defn of Null Space of AT)

To find W+, form columns of A with basis vectors of W, then find NulSp(AT).
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Finding the Orthogonal Complement (Procedure)

How to systematically find the orthogonal complement of a subspace of R"?

Proposition
(Finding Orthogonal Complement of a Subspace of R")

GIVEN: Subspace W of R" such that W = span{w;,w,,--- ,w,}.
TASK: Find orthogonal complement W+.

| |
(1) Form matrix A= [ Wi Wy - W,
. |

(2) W' = NulSp(A”) —> [AT ‘ 0 ] Gauss—lordan, [RREF(AT) ]6 ]
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Direct Sums of Subspaces of R" (Definition)

Definition

(Direct Sum)
Let W;, W, be two subspaces of R".

Then R” is the direct sum of W; & W,, written R”
v € R” can be uniquely written as v = w; + w,, where w; € W; & w, € W,.

i.e. each vector in R” can be uniquely written as a sum of a vector from W; and a vector from W,.

Wi @ Wy, if

v

0 1 1
e.g. Let W; = span 1 {,] 1 and W, = span 0 andv € R3. Then:
0 1 -1
Vi i 0 %V] +1vs V= 3
V2 = —%W +v2 = %Vz + ?vl +3v |+ 1 0 1
V3 L V1 + 53v3 —3Vi+ 3v3
R , 2 2 2 2
v Wi W2
%Vl =+ %V3 EV] - %V}
= V2 + 0 = R3= Wi @ W,
L %Vl =+ %V3 —%V] =+ %V3
Wy W)
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Properties of Orthogonal Complements

(Properties of Orthogonal Complements)
Let W be a subspace of Euclidean induced-norm inner product space (R", (-, )2, || - ||2). Then:

(i) W= is also a subspace of R"
(i) wnwt={0}

(iii) R'=W@@ Wt

(iv)  dim(R") = dim(W) + dim(W-L)
v Wht=w
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Properties of Orthogonal Complements

(Properties of Orthogonal Complements)
Let W be a subspace of Euclidean induced-norm inner product space (R”", (-, )2, || - ||2). Then:

(i) W= is also a subspace of R"
(i) wnwt={0}

(i) R*=wowt

() dim(R") = dim(W) + dim(W)
v WHt=w

PROOF:
(i) Letvectors wt, wit,ws- € W and scalar a € R.
Then, since W is the orthogonal complement (OC) of W:

(W, wi- +wi), = (w,wf)2+(w,w;)2‘):co+0:0 Ywew =  wi+wlewt

{awt, w)y et a{wl, w), La0=0vwew = awt e wt

wih,wi ewWh = wi+wiewt

Hence:
ence wt ewt — awt e wt

-, Wlisalso a subspace of R”. [
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Properties of Orthogonal Complements

(Properties of Orthogonal Complements)
Let W be a subspace of Euclidean induced-norm inner product space (R, (-, )2, || - ||2)- Then:

(i) W= is also a subspace of R"
(i) wnwt={0}

(i) R'=Wa Wt

(v) dim(R") = dim(W) + dim(W+)
(v WwHt=w

PROOF:
(if) Letw € WN WL, Then, since w L w+:

(wow)r =022 |W[3=0 = [[w=0 = w=0 O
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Properties of Orthogonal Complements

(Properties of Orthogonal Complements)
Let W be a subspace of Euclidean induced-norm inner product space (R”", (-, )2, || - ||2). Then:

(i) W= is also a subspace of R"
(i) wnwt={0}

(i) R*=wowt

() dim(R") = dim(W) + dim(W+)
v WHt=w

PROOF:
(iii)-(v): Too long & tedious. See textbook if interested.
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Fundamental Subspaces of a Matrix

(Fundamental Theorem of Linear Algebra — FTLA)

Let matrix A € R™*" s.t. rank(A) = r. Then the fundamental subspaces of A are related as so:

i)  RowSp(A) = ColSp(AT) (iv)  dim ColSp(A) = dim ColSp(AT) = r
(ii)  ColSp(A)L = NulSp(AT) (v) R™ = ColSp(A) @& NulSp(AT)
(iii) ColSp(AT):- = NulSp(A) (vi) R" = ColSp(AT) @ NulSp(A)
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Fundamental Subspaces of a Matrix

(Fundamental Theorem of Linear Algebra — FTLA)

Let matrix A € R"*" s.t. rank(A) = r. Then the fundamental subspaces of A are related as so:

i) RowSp(A = ColSp(AT) (iv) dim ColSp(A) = dim ColSp(AT) = r
(i)  ColSp(A)* = NulSp(AT) (v) R™= ColSp(A) & NulSp(AT)
(iii) ColSp(AT): =  NulSp(A) (vi) R"= ColSp(AT) @ NulSp(A)

PROOF:
(i) RowSp(A) span{Rows of A} (Definition of row space)
span{Columns of AT}  (Definition of a matrix transpose)

ColSp(AT) (Definition of column space)
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Fundamental Subspaces of a Matrix

(Fundamental Theorem of Linear Algebra — FTLA)

Let matrix A € R"*" s.t. rank(A) = r. Then the fundamental subspaces of A are related as so:

i) RowSp(A) = ColSp(AT) (iv)  dim ColSp(A) = dim ColSp(AT) = r
(i)  ColSp(A)X = NulSp(AT) (v) R™ = ColSp(A) & NulSp(AT)
(iii)  ColSp(AT)Y =  NulSp(A) (vi) R" = ColSp(AT) & NulSp(A)
PROOF: Below, aj, - - - , a, denote the columns of A.
(i) ColSp(A)+ := {veR":alv=0 Vac ColSp(A)} (Defn of Orthogonal Complement)
alv=0
= veR": (The columns of A span ColSp(A))
alv=0
= {veR": ATy =0} (Row-vector view of AT)
= NulSp(AT) (Definition of null space)
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Fundamental Subspaces of a Matrix

(Fundamental Theorem of Linear Algebra — FTLA)
Let matrix A € R"*" s.t. rank(A) = r. Then the fundamental subspaces of A are related as so:

i) RowSp(A = ColSp(AT) (iv)  dim ColSp(A) = dim ColSp(AT) = r
(i)  ColSp(A)* = NulSp(AT) (v) R™ = ColSp(A) & NulSp(AT)
(iii) ColSp(AT)L = NulSp(A) (vi) R" = ColSp(AT) @& NulSp(A)
PROOF: Below, aj, - - - ,a, denote the rows of A.
(iii) ColSp(AT)+ RowSp(A)+ (Part (i)

= {veR":(a")"v=0 Vac RowSp(4)} (Defn of Ortho. Complement)

@nhTv=o0

= vER™: : (Rows of A span RowSp(A))
@)Tv=0

= {veR": (AT)Tv =0} (Row-vector view of A7)

= {veR":Av= 6} (Property of Transpose)

= NulSp(A) (Definition of null space)
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Fundamental Subspaces of a Matrix

(Fundamental Theorem of Linear Algebra — FTLA)

Let matrix A € R"*" s.t. rank(A) = r. Then the fundamental subspaces of A are related as so:

i) RowSp(A = ColSp(AT) (iv)  dim ColSp(A) = dim ColSp(AT) = r
(iily  ColSp(A)* = NulSp(AT) (v) R™= ColSp(A) @ NulSp(AT)
(iii) ColSp(AT)L = NulSp(A) (vi) R* = ColSp(AT) & NulSp(A)

PROOF:
(iv) Since rank(A) = r, via Gauss-Jordan elimination,

RREF(A) has r pivot columns and r pivot rows.

.. dim ColSp(A) = (# pivot columns of RREF(A)) = r

. dim ColSp(AT) D gim RowSp(A) = (# pivot rows of RREF(A)) = r
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Fundamental Subspaces of a Matrix

(Fundamental Theorem of Linear Algebra — FTLA)

Let matrix A € R"*" s.t. rank(A) = r. Then the fundamental subspaces of A are related as so:

i) RowSp(A) = ColSp(AT) (iv) dim ColSp(A) = dim ColSp(AT) = r
(i)  ColSp(A)* = NulSp(AT) (v) R™= ColSp(A) @& NulSp(AT)
(iii) ColSp(AT): =  NulSp(A) (vi) R = ColSp(AT) & NulSp(A)

PROOQOF: Let subspace V C R™.

(v) R™ 1% @ v+ (Property of orthogonal complements)
ColSp(A) @ ColSp(A)L (LetV := ColSp(A4))
ColSp(A) @ NulSp(AT) (Part (ii))

Josh Engwer (TTU) Least Squares, Full OR, Orthogonal Matrices 02 Nov 2015 (revised 14 Nov 2021)  20/46



Fundamental Subspaces of a Matrix

(Fundamental Theorem of Linear Algebra — FTLA)
Let matrix A € R"*" s.t. rank(A) = r. Then the fundamental subspaces of A are related as so:

i)  RowSp(A = ColSp(AT) (iv)  dim ColSp(A) = dim ColSp(AT) = r
(i)  ColSp(A)* = NulSp(AT) (v) R™= ColSp(A) ® NulSp(AT)
(iii) ColSp(AT):- = NulSp(A) (vi) R" = ColSp(AT) & NulSp(A)

PROOF: Let subspace W C R".

(vi)R" = w <) wt (Property of orthogonal complements)
= ColSp(A”) @ ColSp(AT)L (Let W := ColSp(AT))
= ColSp(AT) @  NulSp(A) (Part (iii))

O
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Pythagorean Thm for Orthogonal Vectors (PTFQOV)

(Pythagorean Theorem for Orthogonal Vectors (PTFOV))
Vectors u,v € R" are orthogonal <= |ju+ V|3 = |[u|]3 + ||v|3

PROOF: (Recall that || - ||» denotes the Euclidean norm on R™.)
la+v|]3 = (@+v)T(u+v)=@W +v)(u+v)=ulu+ulv+viu+vlv
= (3 +uw-v+vout |3 = [uf[f + 2 v) +[]v]}

e vE=1i+vE &= 20v)=0 &= u-v=0 < ulv [
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Best Approximation Theorem

V — projyv

[lprojyv — ull

(0,0,0)

(Best Approximation Theorem)
Let W be a subspace of R" andv € R" s.t. v¢ W. Then:

[lv—projyvll. < ||[v—u|l. Vu€ S s.t u#proj,v
i.e. the projection of v onto W is the "closest” vector in W to v which is notin W.
proj,v is called the best approximation to v in subspace W.
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Best Approximation Theorem (Proof)

(Best Approximation Theorem)
Let W be a subspace of R* andv € R" s.t. v¢ W. Then:

[lv—projyv| <|lv—u|l. VueSs.t u#proj,v

i.e. the projection of v onto W is the "closest” vector in W to v which is notin W.
proj,v is called the best approximation to v in subspace W.

PROOF: Letu € W s.t. u # projy,v. Then:
v—u=v+0—u=v+ (projyv — projv) — u = (v — projyv) + (projyv — u)

Now, u € W and projyv € W = (projyv—u) € W
Moreover, (v — projy,v) L W = (v — projyv) L (projy,v — u) Hence:

. . PTFQV . .
vV —u= (v—projyv) + (projyv —u) "= [|v —u|[3 = ||v — projy,v|3 + [|projy v — u[3

Since u # projy v,  ||projyv —u|z > 0

= [[v—ul3 = [|v = projy V[ + [[projy v — ull3 > ||v — proj, v|[3
= |lv—ul[5 > |lv—projyv|[; = [Iv—ull2 > |lv—projyvl]. O
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The Least-Squares Problem & Solution (Motivation)

Consider fitting a line to a set of points:

Y

N

Best-Fit Line y = ¢; + ¢z
6.6 oD

: 3
] (1?2) )

>
Assume (foolishly) that the line y = ¢; + ¢,x contains all four points. Then
a+1)e=2 11 2 Overdetermined
c1+ (3)e = — 3 al| |5 Inconsistent
i1+ (@) =3 1 4 | |3 Linear System
c1+ (6)ca =6 16|~y 6 .. No Solution
A b
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The Least-Squares Problem & Solution (Motivation)

Consider fitting a line to a set of points:

Y
A
Best-Fit Line y = ¢; + eox
s 6 )

. (4,3)
~ (1,2)

Clearly, there’s a best-fit line that minimizes the sum of the errors.
In practice, it's preferred to minimize the sum of the squares of the errors.

The overdetermined inconsistent linear system is called the least-squares
problem & the best-fit line is called the least-squares solution.
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The Least-Squares Problem & Solution (Definition)

Definion .|
(Least-Squares Problem & Solution)

Let A € R™*" such that m > n and b ¢ ColSp(A) such that
linear system Ax = b is inconsistent & overdetermined. Then:

The least-squares problem is to find x € R” s.t. ||b — Ax||3 is minimized:

min ||b — Ax|[3
XGRH

REMARK: Vector (b — Ax) is called the residual of the linear system.
Vector x* € R” is a least-squares solution to Ax = b if:

min| b — Ax|} = |Ib — Ax"|
xR

i.e. ||b—Ax*|[3 is the minimum square-norm of the residual.
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Finding Least-Squares Solution (Derivation)

So how to find x* € ColSp(A) that minimizes ||b — Ax||3??

(b —b]

[ ColSp(A)

(0,0,0)

Let b* = projcyigp(a)b be the best approx. to b (Best Approx. Thm)
Then b* € ColSp(4) = b* = Ax* (since Ax* € ColSp(A))
Observe that (b — b*) L ColSp(A) = Residual (b — Ax*) L ColSp(A)
(b — Ax*) € ColSp(A)*  (Defn of Orthogonal Complement)
(b — Ax*) € NulSp(AT)  (Fund. Subspaces of Matrix Thm)

AT(b — Ax*) = 0 (Defn of Null Space of A7)

ATb —ATAx* =0 (Distribute Left-Multiplication by A7)

ATAx* = ATb (Normal Equations)
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Full-Rank Least-Squares Solution using Normal Egn’s

Proposition
(Full-Rank Least-Squares Procedure using Normal Equations)

GIVEN: m x n (m > n) linear system Ax = b, full column rank A, b & ColSp(A).
TASK: Find Least-Squares Solution x* s.t. ||b — Ax|[3 is minimized.

(1) Form normal equations forx*: ATAx* = ATb

(2) Solve normal equations for x* : [ATA ‘ ATb] Gauss—Jordan, [1 ‘ x* ]

(3) Minimize square-norm of Residual: min ||b — Ax||3 = ||b — Ax*||3
min b 2

(4) Find Projection Matrix onto ColSp(A): P = A(ATA)~'AT
(5) Find Best Approximationb* € ColSp(A) tob: b* = Pb = Ax*
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Full-Rank Least-Squares Solution using Reduced QR

Proposition
(Full-Rank Least-Squares Procedure using Reduced QR)

GIVEN: m x n (m > n) linear system Ax = b, full column rank A, b & ColSp(A).
TASK: Find Least-Squares Solution x* s.t. ||b — Ax|[3 is minimized.

(1) Perform Reduced QR Factorization using CGS-EN: A = OR
(Recall that with Reduced QR, Qism x n and R isn x n.)

(2) Find Projection Matrix onto ColSp(A): P = QQ"
(3) Find Best Approximation b* € ColSp(A) tob: b* = Pb

(4) Minimize square-norm of Residual: min |[b — Ax| 3 =|[b — Pb|3
xER”

(5) Back-solve linear system Rx* = Q'b for x*.
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Full OR Factorization via CGS-EN

Proposition
(Full QR Factorization via CGS-EN)

GIVEN: Tall or square (m > n) full column rank matrix A, with columns ay,.
TASK: Factor A = QR where Q.,xm has orthonormal columns q; and R, x . is upper triangular.

(1) Perform Classical Gram-Schmidt w/ early normalization on the columns of A, {a;,a,,--- ,a,}:
o rz2 r3 o ot
| ‘ | 0 r r3 -+ 1
Q:{al @ - il\n}, R=| 0 0 o
I | A
0 0 0 - rm
(2) Produce a basis {a,1,a,+2,-- ,a,} for orthogonal complement of column space of A:

[AT ’6] Gauss—Jordan [RREF(AT) ‘ 6]

(3) Perform CGS-EN on the basis {a, 1,42, - - ,an}, resulting in O, matrix.
(4) Form Q by augmenting Q, to O, and form R by augmenting zero matrix below R:

| | | | 5
. A ) ~ P R
Omxm = |:Qm><n Qr] = |: q 92 - 9n Gut+1 0 dm , Rinxn = [ rg<n :|
I | | |
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Full-Rank Least-Squares Solution using Full OR

Proposition
(Full-Rank Least-Squares Procedure using Full OR)

GIVEN: m x n (m > n) linear system Ax = b, full column rank A, b ¢ ColSp(A).
TASK: Find Least-Squares Solution x* s.t. ||b — Ax|[3 is minimized.

(1) Perform Full OR Factorization using CGS-EN: A = OR

O i= [Dcn 0] Ruxn = | S5 |

(2) Find Projection Matrix onto ColSp(A): P = QQ"
(3) Find best Approximation b* € ColSp(A) tob: b* = Pb
(4) Find Projection Matrix onto ColSp(A)L: P, = 0,0

(5) Minimize square-norm of Residual: IIEI]iRn b — Ax||3= ||P,b|[3
X n

(6) Back-solve linear system Rx* = Q"b for x*.
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PART Il

PART III:
Orthogonal Matrices
Definition
Properties

Determinants
Preservation
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Orthogonal Matrices (Definition & Properties)

The square matrix Q produced from the Full QR Factorization is special:

Definition
(Orthogonal Matrix)

A square matrix Q is orthogonal if its columns are orthonormal.

Orthogonal matrices have some very nice properties:

(Properties of Orthogonal Matrices)
Let Q be an m x m square matrix. Then, the following properties are all equivalent:

(a) QO is an orthogonal matrix

(b)  The columns of Q are orthonormal
() Q"0=00" =1

@ o '=0f

(e) QT is an orthogonal matrix

(f) The rows of Q are orthonormal
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Orthogonal Matrices (Properties)

(Properties of Orthogonal Matrices)
Let Q be anm x m square matrix. Then, the following properties are all equivalent:

(a) Q is an orthogonal matrix

(b)  The columns of Q are orthonormal
() 0"0=00" =1

@ o '=0f

(e) QT is an orthogonal matrix

(f) The rows of Q are orthonormal

PROOF: [(a) <= (b)] Follows immediately from the definition of an orthogonal matrix.
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Orthogonal Matrices (Properties)

(Properties of Orthogonal Matrices)
Let Q be anm x m square matrix. Then, the following properties are all equivalent:

(a) Q is an orthogonal matrix

(b)  The columns of Q are orthonormal
() Q"0=00" =1

(@ o '=0"

(e) QT is an orthogonal matrix

(f) The rows of Q are orthonormal

PROOF: [(b) <= (c)] The columnsof Q,q,"-- ,qm, are orthonormal.
< q'q;=4¢; (definition of orthonormal vectors)

q — | | TR T T
= Qo= : [ﬁl am:|: o :
i, — L | @@ -
aa o Qe L0
— 07o= : : =|: . 1 |=1 (sinceq/q;=2dy)
Ga o G 0 1

— 0'g=1
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Orthogonal Matrices (Properties)

(Properties of Orthogonal Matrices)
Let Q be an m x m square matrix. Then, the following properties are all equivalent:

(a)  Q is an orthogonal matrix

(b)  The columns of Q are orthonormal
() 0"0=00" =1

@ o '=0f

(e) QT is an orthogonal matrix

(f) The rows of Q are orthonormal

PROOF: [(b) <= (c)] The columns of Q,qi, - ,qu, are orthonormal.
< q'q;=46; (definition of orthonormal vectors)
<~ 00"=q ¢/ +---+Gq.q}, (Outer product expansion of QQ7)
00" =P =1 since the columns of Q are an orthonormal basis for R™...
—ome ...and matrix P,, projects onto R", meaning P,u = u Yu € R”
= 0'0=00"=1
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Orthogonal Matrices (Properties)

(Properties of Orthogonal Matrices)
Let Q be anm x m square matrix. Then, the following properties are all equivalent:

(a) Q is an orthogonal matrix

(b)  The columns of Q are orthonormal
() 0'o=00" =1

(@ o '=0"

(e) QT is an orthogonal matrix

(f) The rows of Q are orthonormal

PROOF: [(c) < (d)] Q"0 =00 =1
< Q0 !'=0" (definition of inverse of square matrix)
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Orthogonal Matrices (Properties)

(Properties of Orthogonal Matrices)
Let Q be anm x m square matrix. Then, the following properties are all equivalent:

(a) Q is an orthogonal matrix

(b)  The columns of Q are orthonormal
() 0"0=00" =1

@ o '=0"

(e) QT is an orthogonal matrix

(f) The rows of Q are orthonormal

PROOF: [(d) < (e)] 0~ '=0".

— Qlog=00"=1 (definition of inverse of square matrix)

— (QTQ)T =(o"HT =17 (transpose equation)

=  OrENT = NI =1 (transpose of matrix product and identity matrix)
<= The columns of Q7 are orthonormal (since (b) <= (c))

<= QT is an orthogonal matrix (definition of orthogonal matrix)
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Orthogonal Matrices (Properties)

(Properties of Orthogonal Matrices)

Let Q be an m x m square matrix. Then, the following properties are all equivalent:

(a) Q is an orthogonal matrix

(b)  The columns of Q are orthonormal
(¢) 0"0=00" =1

(@ o'=0"

(e) QT is an orthogonal matrix

(f) The rows of Q are orthonormal

PROOF: [(e) «= (f)] QT is an orthogonal matrix.

<  The columns of QT are orthonormal  (definition of orthogonal matrix)
<= The rows of Q are orthonormal (definition of transpose of a matrix)

(@) = (b)) = (o) = (@) = () <= ()

*. The properties are all equivalent. |
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Orthogonal Matrices (Determinants)

(Orthogonal Matrices & Determinants)

(a) Q is orthogonal matrix —> det(Q) = +1.
(b) The converse is not necessarily true: det(Q) = +£1 =# Q is orthogonal matrix
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Orthogonal Matrices (Determinants)

(Orthogonal Matrices & Determinants)

(a) Q is orthogonal matrix —> det(Q) = £1.
(b) The converse is not necessarily true: det(Q) = +£1 =# Q is orthogonal matrix

PROOF:
(a) Let Q be an orthogonal matrix. Then:
olo=1 (Orthogonal Matrix Property)

= det(QTQ) = det(1) (Take determinant on both sides)
= det(Q"Q) =det(I) =1 (Determinant of Identity Matrix is One)
= det(Q")-det(Q) =1 (Determinant of Matrix Product)
= det(Q) -det(Q) =1  (Determinant of Matrix Transpose)
e [det(Q)]* =1 (Determinant of Matrix Transpose)
= |det(Q)| =1 (Take Square Roots on both sides)
= det(Q) = +1 (Definition of Absolute Value)
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Orthogonal Matrices (Determinants)

(Orthogonal Matrices & Determinants)

(a) Q is orthogonal matrix —> det(Q) = £1.
(b) The converse is not necessarily true: det(Q) = £1 =# Q is orthogonal matrix

PROOF:
(b) Below are several counterexamples:

-2 1 -1 1
0.1 0 0 4 0 1
b= { 0 10 } U=1 00 1 2
0 0 0 1/8
Then, det(D) = (0.1)(10) = 1, and det(U) = (—2)(4)(1)(1/8) = —1 ... but:

DD = [ 0'(())1 180 ] # [ 10 } = I,x» = D is not orthogonal

0 1
4 =2 2 -2 1 0 0 O
-2 17 -1 5 0O 1 0 O .
Ty — —
Uvu= s —1 2 #1060 o | o |=% = Uisnotorthogonal I
-2 5 1 385/64 0 0 0 1
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Orthogonal Matrices (Preservation)

The following theorem is the cornerstone to many stable numerical algorithms
involving orthogonal matrices:

(Orthogonal Preservation Theorem)
Consider the Euclidean inner product space (R”, (-,-),) where v,w,x € R"” and

Inner product  (v,w), = viw
Induced norm  ||x|l, = (X,X)
Induced metric dy(v,w) = |[v—w]||

Then orthogonal matrix Q € R"*" preserves inner products, norms & metrics:

(i) (Qv, OW)2 = (v, W)s, (i0) ||10x| |2 = |[x]]2, (iii) dy(Qv, QW) = da (v, W)

v
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Orthogonal Matrices (Preservation)

(Orthogonal Preservation Theorem)
Consider the Euclidean inner product space (R", (-, -),) where v,w,x € R" and

Inner product  (v,w), = viw
Induced norm  ||x||, = (X,X)2
Induced metric dy(v,w) = |[[v—w]||

Then orthogonal matrix Q € R"*" preserves inner products, norms & metrics:
(i) (Qv, OW) = (v, W)o,  (ii) ||Oxll2 = [Ix[l2,  (iii) d2(QV, OW) = da(V, W)
PROOF:

(i) (Qv, QW) == (QV)T(QW) B v/ (QTQ)w £ vIIw £ vTw i= (v, W),

(i) 110x]B = (0x.0x)2 2 (x,x)2 = x|} =5 [[x]]2 = 1x]|2

(iil) dy(Qv, @w) = [|v — @wll2 2 [|o(v — W)l £ |Iv — wl[> = da(v, W) 0

v
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