Linear Transformations: Definition, Image Linear Algebra

Josh Engwer

TTU
06 November 2015

Common Vector Spaces

$$
\begin{aligned}
\mathbb{R} & \equiv \text { Set of all real numbers (scalars) } \\
\mathbb{R}^{2} & \equiv \text { Set of all ordered pairs (2-wide vectors) } \\
\mathbb{R}^{3} & \equiv \text { Set of all ordered triples (3-wide vectors) } \\
\mathbb{R}^{n} & \equiv \text { Set of all ordered } n \text {-tuples (} n \text {-wide vectors) } \\
\mathbb{R}^{m \times n} & \equiv \text { Set of all } m \times n \text { matrices } \\
\mathbb{R}^{n \times n} & \equiv \text { Set of all } n \times n \text { square matrices } \\
P_{n} & \equiv \text { Set of all polynomials of degree } n \text { or less } \\
C[a, b] & \equiv \text { Set of all continuous functions on }[a, b] \\
C^{1}[a, b] & \equiv \text { Set of all differentiable functions on }[a, b] \\
C^{2}[a, b] & \equiv \text { Set of all twice-differentiable fcns on }[a, b] \\
C(\mathbb{R}) & \equiv \text { Set of all everywhere-continuous functions } \\
C^{1}(\mathbb{R}) & \equiv \text { Set of all everywhere-differentiable functions } \\
C^{2}(\mathbb{R}) & \equiv \text { Set of all everywhere-twice-differentiable fens } \\
C^{\infty}(\mathbb{R}) & \equiv \text { Set of all everywhere-infinitely-differentiable fcns }
\end{aligned}
$$

REMARK: Always assume that the operations of vector addition \& scalar multiplication are the standard definitions.
One could define these operations in other ways, but such scenarios are dealt with extensively in Abstract Algebra. (MATH 3360)

Transformation (Definition)

Definition

(Transformation)

A transformation T is a function between vector spaces V, W.
The signature of transformation T from vector spaces V into W is written:

$$
T: V \rightarrow W
$$

V is the domain of T and W is the codomain of T.
$T(\mathbf{v}) \in W$ is called the image of vector $\mathbf{v} \in V$.
The set of all images of all vectors in V is the range of T :

$$
\operatorname{Range}(T):=\{T(\mathbf{v}): \mathbf{v} \in V\} \subseteq W
$$

Examples of Transformations

SIGNATURE	EXAMPLE	SPECIAL NAME
$T: \mathbb{R} \rightarrow \mathbb{R}$	$T(x)=x^{2}+1$	(Scalar) Function
$T: \mathbb{R} \rightarrow \mathbb{R}^{n}$	$T(t)=\left[\begin{array}{c} 1-t \\ \sqrt{t} \end{array}\right]$	
$T: \mathbb{R}^{m} \rightarrow \mathbb{R}$	$T(\mathbf{x})=2 \mathbf{x}^{T} \mathbf{x}$	Scalar Field
$T: \mathbb{R}^{m} \rightarrow \mathbb{R}$	$T\left(\left[\begin{array}{l} x_{1} \\ x_{2} \end{array}\right]\right)=x_{1}^{3}-x_{1} x_{2}$	Scalar Field
$T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$	$T(\mathbf{x})=A \mathbf{x} \quad\left(A \in \mathbb{R}^{3 \times 4}\right)$	Vector Field
$T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$	$T\left(\left[\begin{array}{l} x_{1} \\ x_{2} \\ x_{3} \end{array}\right]\right)=\left[\begin{array}{c} \sin x_{3} \\ \ln x_{2}-x_{1}^{2} \end{array}\right]$	Vector Field

Examples of Transformations

SIGNATURE	EXAMPLE	SPECIAL NAME
$T: \mathbb{R} \rightarrow \mathbb{R}^{m \times n}$	$T(t)=t^{2} I \quad(I$ is 3×3 identity matrix)	Matrix Function
$T: \mathbb{R} \rightarrow \mathbb{R}^{m \times n}$	$T(t)=\left[\begin{array}{cc}8 & \left(1-t^{4}\right) \\ \cos (\pi t) & 5 e^{t}\end{array}\right]$	Matrix Function
$T: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}$	$T(A)=\operatorname{det}(A)+7$????
$T: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$	$T\left(\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right]\right)=a_{11} a_{21}-a_{32}^{2}$????
$T: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{m \times n}$	$T(A)=I-3 A$????
$T: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{m \times n}$	$T\left(\left[\begin{array}{cc}a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right]\right)=\left[\begin{array}{cc}a_{23}^{2} & 0 \\ a_{13} a_{11} & a_{13} \\ \sqrt[3]{a_{11}} & 6 a_{22}\end{array}\right]$????

Examples of Transformations

SIGNATURE	EXAMPLE	SPECIAL NAME
$T: P_{n} \rightarrow \mathbb{R}$	$T(p)=3 p(1)-2 p(-1)+4$????
$T: P_{2} \rightarrow \mathbb{R}$	$T\left(a x^{2}+b x+c\right)=3 a-b^{4}+c^{2 / 3}$????
$T: P_{n+2} \rightarrow P_{n}$	$T(p)=p^{\prime \prime}(x)$????
$T: P_{n} \rightarrow P_{n+1}$	$T(p)=\int p(x) d x$????
$T: C^{2}(\mathbb{R}) \rightarrow \mathbb{R}$	$T(f)=3 f^{\prime \prime}(2)-2 f^{\prime}(1)+f(0)$	Functional
$T: C[0,1] \rightarrow \mathbb{R}$	$T(f)=\int_{0}^{1} x^{2} f(x) d x$	Functional

Linear Transformation (Definition)

The most useful transformations are linear transformations:

Definition

(Linear Transformation)
Let V, W be vector spaces and transformation $T: V \rightarrow W$. Then:
T is a linear transformation if the following all hold $\forall \mathbf{u}, \mathbf{v} \in V$ and $\forall \alpha \in \mathbb{R}$:
(LT1) $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v}) \quad$ Preservation of Vector Addition
(LT2) $T(\alpha \mathbf{v})=\alpha T(\mathbf{v}) \quad$ Preservation of Scalar Mult.
i.e. Linear transformations preserve vector addition \& scalar multiplication.

REMARK: If you are told a transformation is linear a priori, then the linear transformation will be denoted by L instead of T.

Linear Transformation (Properties)

Theorem

(Properties Linear Transformation)
Let $L: V \rightarrow W$ be a linear transformation.
Then the following all hold $\forall \mathbf{u}, \mathbf{v} \in V$ and $\forall \alpha, \beta \in \mathbb{R}$:

$(L T 3)$	$L(\overrightarrow{\mathbf{0}})$	$=$	$\overrightarrow{\mathbf{0}}$	L maps $\overrightarrow{\mathbf{0}} \in V$ to $\overrightarrow{\mathbf{0}} \in W$
$(L T 4)$	$L(\mathbf{u}-\mathbf{v})$	$=$	$L(\mathbf{u})-L(\mathbf{v})$	Preservation of Vector Subtraction
$(L T 5)$	$L(\alpha \mathbf{u}+\beta \mathbf{v})$	$=$	$\alpha L(\mathbf{u})+\beta L(\mathbf{v})$	
Superposition Principle				

Establishing (LT5) is sufficient when showing T is a linear transformation.
(LT3) may be helpful when showing T is not a linear transformation.

Corollary

(General Superposition Principle)
Let $L: V \rightarrow W$ be a linear transformation and $\mathbf{v} \in V$. Then:

$$
\mathbf{v}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{n} \mathbf{v}_{n} \Longrightarrow L(\mathbf{v})=c_{1} L\left(\mathbf{v}_{1}\right)+c_{2} L\left(\mathbf{v}_{2}\right)+\cdots+c_{n} L\left(\mathbf{v}_{n}\right)
$$

where $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n} \in V$ and $c_{1}, c_{2}, \ldots, c_{n} \in \mathbb{R}$.

Linear Transformation (Properties)

Theorem

(Properties Linear Transformation)
Let $L: V \rightarrow W$ be a linear transformation.
Then the following all hold $\forall \mathbf{u}, \mathbf{v} \in V$ and $\forall \alpha, \beta \in \mathbb{R}$:

(LT3)	$L(\overrightarrow{\mathbf{0}})$	$=$	$\overrightarrow{\mathbf{0}}$	L maps $\overrightarrow{\mathbf{0}} \in V$ to $\overrightarrow{\mathbf{0}} \in W$
$(L T 4)$	$L(\mathbf{u}-\mathbf{v})$	$=$	$L(\mathbf{u})-L(\mathbf{v})$	Preservation of Vector Subtraction
$(L T 5)$	$L(\alpha \mathbf{u}+\beta \mathbf{v})$	$=$	$\alpha L(\mathbf{u})+\beta L(\mathbf{v})$	
Superposition Principle				

PROOF:

$L(\overrightarrow{\mathbf{0}})=L((0) \mathbf{v}) \stackrel{L T 2}{=}(0) L(\mathbf{v})=\overrightarrow{\mathbf{0}}$
$L(\mathbf{u}-\mathbf{v})=L(\mathbf{u}+(-1) \mathbf{v}) \stackrel{L T 1}{=} L(\mathbf{u})+L((-1) \mathbf{v}) \stackrel{L T 2}{=} L(\mathbf{u})+(-1) L(\mathbf{v})=L(\mathbf{u})-L(\mathbf{v})$
$L(\alpha \mathbf{u}+\beta \mathbf{v}) \stackrel{L T 1}{=} L(\alpha \mathbf{u})+L(\beta \mathbf{v}) \stackrel{L T 2}{=} \alpha L(\mathbf{u})+\beta L(\mathbf{v})$

Two Special Linear Transformations

Proposition

(Zero Transformation \& Identity Transformation)
Let $L: V \rightarrow W$ be a linear transformation. Then:
$(Z T) L$ is the zero transformation if $L(\mathbf{v})=\overrightarrow{\mathbf{0}} \quad \forall \mathbf{v} \in V$
(IT) L is the identity transformation if $L(\mathbf{v})=\overrightarrow{\mathbf{v}} \quad \forall \mathbf{v} \in V$
PROOF (that zero \& identity transformations are linear):
Let T be the zero transformation (ZT). Then:

$$
T(\alpha \mathbf{u}+\beta \mathbf{v}) \stackrel{Z T}{=} \overrightarrow{\mathbf{0}}=(\alpha) \overrightarrow{\mathbf{0}}+(\beta) \overrightarrow{\mathbf{0}} \stackrel{Z T}{=} \alpha T(\mathbf{u})+\beta T(\mathbf{v}) \Longrightarrow \mathbf{Z T} \text { is linear }
$$

Let T be the identity transformation (IT). Then:

$$
T(\alpha \mathbf{u}+\beta \mathbf{v}) \stackrel{I T}{=} \alpha \mathbf{u}+\beta \mathbf{v} \stackrel{I T}{=} \alpha T(\mathbf{u})+\beta T(\mathbf{v}) \Longrightarrow \mathrm{IT} \text { is linear }
$$

QED

Linear Transformation given by a Matrix

Theorem

(Linear Transformation given by a Matrix)
Let A be an $m \times n$ matrix.
Then $T(\mathbf{v})=A \mathbf{v}$ is a linear transformation from \mathbb{R}^{n} into \mathbb{R}^{m} :

$$
T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

PROOF: The shape of matrix A forces the shapes of $\mathbf{v} \&$ its image $T(\mathbf{v})$:

$\Longrightarrow \mathbf{v} \in \mathbb{R}^{n}$ and $T(\mathbf{v}) \in \mathbb{R}^{m} \Longrightarrow T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$

$$
T(\alpha \mathbf{u}+\beta \mathbf{v})=A(\alpha \mathbf{u}+\beta \mathbf{v})=A(\alpha \mathbf{u})+A(\beta \mathbf{v})=\alpha(A \mathbf{u})+\beta(A \mathbf{v})=\alpha T(\mathbf{u})+\beta T(\mathbf{v})
$$

$\Longrightarrow T$ is linear

Fin.

