Linear Transformations: Kernel, Range, 1-1, Onto

 Linear AlgebraJosh Engwer

TTU
09 November 2015

Kernel of a Linear Transformation (Definition)

Definition

(Kernel of a Linear Transformation)
Let $L: V \rightarrow W$ be a linear transformation.
Then the kernel of L is defined to be:

$$
\operatorname{ker}(L):=\{\mathbf{v} \in V: L(\mathbf{v})=\overrightarrow{\mathbf{0}}\} \subseteq V
$$

i.e. The kernel of L is the set of all vectors in V that are mapped by L to $\overrightarrow{\mathbf{0}}$.

Theorem

(The Kernel of L is a Subspace of V)
Let $L: V \rightarrow W$ be a linear transformation. Then, $\operatorname{ker}(L)$ is a subspace of V.

Kernel of a Linear Transformation (Definition)

Definition

(Kernel of a Linear Transformation)
Let $L: V \rightarrow W$ be a linear transformation.
Then the kernel of L is defined to be:

$$
\operatorname{ker}(L):=\{\mathbf{v} \in V: L(\mathbf{v})=\overrightarrow{\mathbf{0}}\} \subseteq V
$$

Theorem

(The Kernel of L is a Subspace of V)
Let $L: V \rightarrow W$ be a linear transformation. Then, $\operatorname{ker}(L)$ is a subspace of V.
PROOF: $L(\overrightarrow{\mathbf{0}})=\overrightarrow{\mathbf{0}} \Longrightarrow \overrightarrow{\mathbf{0}} \in \operatorname{ker}(L) \Longrightarrow \operatorname{ker}(L)$ is a nonempty subset of V.
$\mathbf{u}, \mathbf{v} \in \operatorname{ker}(L) \Longrightarrow L(\mathbf{u}+\mathbf{v}) \stackrel{L T 1}{=} L(\mathbf{u})+L(\mathbf{v})=\overrightarrow{\mathbf{0}}+\overrightarrow{\mathbf{0}}=\overrightarrow{\mathbf{0}} \Longrightarrow \mathbf{u}+\mathbf{v} \in \operatorname{ker}(L)$
$\alpha \in \mathbb{R}, \mathbf{v} \in \operatorname{ker}(L) \Longrightarrow L(\alpha \mathbf{v}) \stackrel{L T 2}{=} \alpha L(\mathbf{v})=\alpha(\overrightarrow{\mathbf{0}})=\overrightarrow{\mathbf{0}} \Longrightarrow \alpha \mathbf{v} \in \operatorname{ker}(L)$
$\therefore \operatorname{ker}(L)$ is closed under VA \& SM $\Longrightarrow \operatorname{ker}(L)$ is a subspace of V QED

Range of a Linear Transformation (Definition)

Definition

(Range of a Linear Transformation)
Let $L: V \rightarrow W$ be a linear transformation.
Then the range of L is defined to be:

$$
\operatorname{range}(L):=\{L(\mathbf{v}) \in W: \mathbf{v} \in V\}
$$

Theorem

(The Range of L is a Subspace of W)
Let $L: V \rightarrow W$ be a linear transformation. Then, range (L) is a subspace of W.
PROOF: $L(\overrightarrow{\boldsymbol{0}})=\overrightarrow{\boldsymbol{0}} \Longrightarrow \overrightarrow{\mathbf{0}} \in \operatorname{range}(L) \Longrightarrow$ range (L) is nonempty subset of W. $L(\mathbf{u}), L(\mathbf{v}) \in \operatorname{range}(L) \Longrightarrow \mathbf{u}, \mathbf{v} \in V \Longrightarrow(\mathbf{u}+\mathbf{v}) \in V \Longrightarrow L(\mathbf{u}+\mathbf{v}) \in \operatorname{range}(L)$ $\alpha \in \mathbb{R}, L(\mathbf{v}) \in \operatorname{range}(L) \Longrightarrow \mathbf{v} \in V \Longrightarrow \alpha \mathbf{v} \in V \Longrightarrow L(\alpha \mathbf{v}) \in \operatorname{range}(L)$
\therefore range (L) is closed under VA \& SM \Longrightarrow range (L) is a subspace of W

$\operatorname{Ker}(L)$ \& Range (L) in terms of Representative Matrix

Corollary

(Relationship between a Linear Transformation and its Representative Matrix)
Let $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that $L(\mathbf{x})=A \mathbf{x} . \quad$ (where $A \in \mathbb{R}^{m \times n}$) Then:

$$
\operatorname{ker}(L)=\operatorname{NulSp}(A) \quad \operatorname{range}(L)=\operatorname{ColSp}(A)
$$

PROOF:

$\mathbf{x} \in \operatorname{ker}(L) \subseteq \mathbb{R}^{n} \Longleftrightarrow L(\mathbf{x})=\overrightarrow{\mathbf{0}} \Longleftrightarrow A \mathbf{x}=\overrightarrow{\mathbf{0}} \Longleftrightarrow \mathbf{x} \in \operatorname{NuISp}(A)$
$L(\mathbf{x}) \in \operatorname{range}(L) \subseteq \mathbb{R}^{m} \Longleftrightarrow \mathbf{x} \in \mathbb{R}^{n} \Longleftrightarrow A \mathbf{x} \in \operatorname{CoISp}(A)$

Rank \& Nullity of a Linear Transformation

Definition

(Rank \& Nullity of a Matrix \& Linear Transformation)
(i) Let A be an $m \times n$ matrix. Then:

$$
\left.\begin{array}{rl}
\operatorname{rank}(A) & =\operatorname{dim}[\operatorname{ColSp}(A)] \\
\operatorname{nullity}(A) & =\operatorname{dim}[\operatorname{NulSp}(A)]
\end{array}=(\# \text { of pivot columns of } \operatorname{RREF}(A))\right)
$$

(ii) Let $L: V \rightarrow W$ be a linear transformation. Then:

$$
\operatorname{rank}(L)=\operatorname{dim}[\operatorname{range}(L)] \quad \operatorname{nullity}(L)=\operatorname{dim}[\operatorname{ker}(L)]
$$

Rank-Nullity Theorem

Theorem

(Rank-Nullity Theorem)
(i) Let A be an $m \times n$ matrix. Then:

$$
\operatorname{rank}(A)+\operatorname{nullity}(A)=(\# \text { of columns of } A)
$$

(ii) Let $L: V \rightarrow W$ be a linear transformation. Then:

$$
\operatorname{rank}(L)+\operatorname{nullity}(L)=\operatorname{dim}[\operatorname{domain}(L)]
$$

Preimage of a Vector (Definition)

Definition

(Preimage of a Vector)
Let $T: V \rightarrow W$ be a transformation. Then the preimage of vector $\mathbf{w} \in W$ is:

$$
\text { Preimage }(\mathbf{w}):=\{\mathbf{v} \in V: T(\mathbf{v})=\mathbf{w}\} \subseteq V
$$

1-1 Linear Transformations (Definition)

Definition

(1-1 Transformation)
Let $T: V \rightarrow W$ be a transformation. Then:

$$
T \text { is 1-1 (one-to-one) } \Longleftrightarrow \forall \mathbf{u}, \mathbf{v} \in V, T(\mathbf{u})=T(\mathbf{v}) \Longrightarrow \mathbf{u}=\mathbf{v} .
$$

Definition

(1-1 Linear Transformation)
Let $L: V \rightarrow W$ be a linear transformation. Then, L is 1-1 $\Longleftrightarrow \operatorname{ker}(L)=\{\overrightarrow{\boldsymbol{0}}\}$.

Onto Linear Transformations (Definition)

Definition

(Onto Transformation)
Let $T: V \rightarrow W$ be a transformation. Then, T is onto $\Longleftrightarrow \operatorname{range}(T)=W$.

Definition

(Onto Linear Transformation)
Let $L: V \rightarrow W$ be a linear transformation such that W is finite-dimensional. Then, L is onto $\Longleftrightarrow \operatorname{rank}(L)=\operatorname{dim}(W)$.

Isomorphisms (Definition)

Definition

(Isomorphism)
Let $L: V \rightarrow W$ be a linear transformation.
Then, L is called an isomorphism if L is 1-1 and onto.
Moreover, vector spaces V, W are said to be isomorphic (to each other) if there exists an isomorphism from V to W.

Theorem

(Finite-dimensional Isomorphic Spaces have the same Dimension)
Let V, W be finite-dimensional vector spaces.
Then, $V \& W$ are isomorphic $\Longleftrightarrow \operatorname{dim}(V)=\operatorname{dim}(W)$
PROOF: See the textbook if interested.

Isomorphisms (Examples)

Vector spaces $\mathbb{R}^{4}, \mathbb{R}^{2 \times 2}, P_{3}$ are all isomorphic to each other since there exists isomorphisms L_{1}, L_{2} as shown below:

$$
\begin{aligned}
& \text { Let } L_{1}: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}^{4} \text { s.t. } L_{1}\left(\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\right)=\left[\begin{array}{l}
a_{11} \\
a_{12} \\
a_{21} \\
a_{22}
\end{array}\right] \\
& \text { Let } L_{2}: P_{3} \rightarrow \mathbb{R}^{4} \text { s.t. } L_{2}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}\right)=\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]
\end{aligned}
$$

Isomorphic vector spaces are essentially "the same" but with representations by different mathematical objects (vectors, matrices, polynomials.)

In particular, matrices \& polynomials can be represented by vectors, which will be quite useful in the next two sections....

Fin.

