Linear Transformations: Standard Matrix Linear Algebra

Josh Engwer

TTU
11 November 2015

PART I:

STANDARD MATRIX (THE EASY CASE) COMPOSITION OF LINEAR TRANSFORMATIONS INVERSE OF A LINEAR TRANSFORMATION

Representing a Linear Transformation by a Matrix

It's desirable to represent linear transformations as matrix-vector products:

$$
L(\mathbf{x})=A \mathbf{x}
$$

But how to systematically achieve this??

Consider linear transformation $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ such that

$$
L\left(x_{1}, x_{2}\right)=\left(4 x_{2}-x_{1}, x_{1}+x_{2}, 3 x_{2}\right) \Longleftrightarrow L\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
4 x_{2}-x_{1} \\
x_{1}+x_{2} \\
3 x_{2}
\end{array}\right]
$$

Representing a Linear Transformation by a Matrix

Consider linear transformation $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ such that

$$
\begin{aligned}
& L\left(x_{1}, x_{2}\right)=\left(4 x_{2}-x_{1}, x_{1}+x_{2}, 3 x_{2}\right) \Longleftrightarrow L\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
4 x_{2}-x_{1} \\
x_{1}+x_{2} \\
3 x_{2}
\end{array}\right] \\
& L(\mathbf{x})=L\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
4 x_{2}-x_{1} \\
x_{1}+x_{2} \\
3 x_{2}
\end{array}\right]=\left[\begin{array}{r}
-x_{1} \\
x_{1} \\
0
\end{array}\right]+\left[\begin{array}{r}
4 x_{2} \\
x_{2} \\
3 x_{2}
\end{array}\right] \\
&=x_{1}\left[\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{l}
4 \\
1 \\
3
\end{array}\right]=\left[\begin{array}{rr}
-1 & 4 \\
1 & 1 \\
0 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=A \mathbf{x}
\end{aligned}
$$

However, recall the standard basis for $\mathbb{R}^{2}: \mathcal{E}=\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\} \equiv\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ Then,
$L\left(\mathbf{e}_{1}\right)=A \mathbf{e}_{1}=\left[\begin{array}{r}-1 \\ 1 \\ 0\end{array}\right], L\left(\mathbf{e}_{2}\right)=A \mathbf{e}_{2}=\left[\begin{array}{l}4 \\ 1 \\ 3\end{array}\right] \Longrightarrow A=\left[\begin{array}{cc}\mid & \mid \\ L\left(\mathbf{e}_{1}\right) & L\left(\mathbf{e}_{2}\right) \\ \mid & \mid\end{array}\right]$

The Standard Matrix for a Linear Transformation

Definition

(Standard Matrix for a Linear Transformation)
Let linear transformation $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ s.t. $L(\mathbf{x})=A \mathbf{x} \forall \mathbf{x} \in \mathbb{R}^{n}$, where $A \in \mathbb{R}^{m \times n}$. Then A is called the standard matrix for linear transformation L.

Proposition

(Finding the Standard Matrix - Easy Case)
GIVEN: Linear Transformation $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ s.t. L is explicitly defined.
TASK: Find Standard Matrix $A \in \mathbb{R}^{m \times n}$ s.t. $L(\mathbf{x})=A \mathbf{x}$
(1) $A=\left[\begin{array}{cccc}\mid & \mid & & \mid \\ L\left(\mathbf{e}_{1}\right) & L\left(\mathbf{e}_{2}\right) & \cdots & L\left(\mathbf{e}_{n}\right) \\ \mid & \mid & & \mid\end{array}\right]$
i.e. The columns of A are the images of the standard basis vectors for \mathbb{R}^{n}.

Composition of Linear Transformations

Theorem

(Composition of Linear Transformations)
Let linear transformation $L_{1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ s.t. $L_{1}(\mathbf{x})=A_{1} \mathbf{x}$.
Let linear transformation $L_{2}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$ s.t. $L_{2}(\mathbf{x})=A_{2} \mathbf{x}$.
Then the composition $L_{2} \circ L_{1}$ is defined by $\left(L_{2} \circ L_{1}\right)(\mathbf{x}):=L_{2}\left[L_{1}(\mathbf{x})\right]$.
Moreover, the composition $L_{2} \circ L_{1}$ is a linear transformation and

$$
\left(L_{2} \circ L_{1}\right)(\mathbf{x})=\left(A_{2} A_{1}\right) \mathbf{x}
$$

PROOF:

$$
\begin{aligned}
\left(L_{2} \circ L_{1}\right)(\mathbf{x}+\mathbf{y}) & =L_{2}\left[L_{1}(\mathbf{x}+\mathbf{y})\right] \stackrel{L T 1}{=} L_{2}\left[L_{1}(\mathbf{x})+L_{1}(\mathbf{y})\right] \stackrel{L T 1}{=} L_{2}\left[L_{1}(\mathbf{x})\right]+L_{2}\left[L_{1}(\mathbf{y})\right] \\
& =\left(L_{2} \circ L_{1}\right)(\mathbf{x})+\left(L_{2} \circ L_{1}\right)(\mathbf{y})
\end{aligned}
$$

$\left(L_{2} \circ L_{1}\right)(\alpha \mathbf{x})=L_{2}\left[L_{1}(\alpha \mathbf{x})\right] \stackrel{L T 2}{=} L_{2}\left[\alpha L_{1}(\mathbf{x})\right] \stackrel{L T 2}{=} \alpha L_{2}\left[L_{1}(\mathbf{x})\right]=\alpha\left(L_{2} \circ L_{1}\right)(\mathbf{x})$
$\therefore L_{2} \circ L_{1}$ is a linear transformation.

$$
\left(L_{2} \circ L_{1}\right)(\mathbf{x})=L_{2}\left[L_{1}(\mathbf{x})\right]=L_{2}\left(A_{1} \mathbf{x}\right)=A_{2}\left(A_{1} \mathbf{x}\right) \stackrel{M 1}{=}\left(A_{2} A_{1}\right) \mathbf{x}
$$

Inverse Linear Transformation

Definition

(Inverse Linear Transformation)
Let linear transformation $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ have identical domain \& codomain. Then linear transformation $L^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is the inverse of L if

$$
\left(L^{-1} \circ L\right)(\mathbf{x})=\mathbf{x} \text { and }\left(L \circ L^{-1}\right)(\mathbf{x})=\mathbf{x} \quad \forall \mathbf{x} \in \mathbb{R}^{n}
$$

L is called invertible if its inverse L^{-1} exists.

Theorem

(Inverse Linear Transformation in terms of Standard Matrix)
Let linear transformation $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ s.t. $L(\mathbf{x})=A \mathbf{x}$.
If L is invertible, then its inverse $L^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that $\quad L^{-1}(\mathbf{x})=A^{-1} \mathbf{x}$

PART II:

STANDARD MATRIX (THE HARD CASE) STANDARD MATRIX FOR DERIVATIVE OF POLYNOMIALS STANDARD MATRIX FOR INTEGRAL OF POLYNOMIALS

Representing a Linear Transformation by a Matrix

As seen in PART I, it's straightforward to find the standard matrix A for a linear transformation L when:
(EASY CASE) L is defined explicitly in terms of components of \mathbf{x} :

$$
\begin{gathered}
L\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
4 x_{2}-x_{1} \\
x_{1}+x_{2} \\
3 x_{2}
\end{array}\right] \\
- \text { OR }-\quad . \quad . ~
\end{gathered}
$$

(EASY CASE) L is described in terms of images of standard basis vectors:

$$
L\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{r}
0 \\
-7 \\
-2
\end{array}\right], \text { and } L\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
5 \\
4 \\
4
\end{array}\right]
$$

-- BUT HOW TO HANDLE
(HARD CASE) L is described in terms of images of non-std basis vectors:

$$
L\left(\left[\begin{array}{r}
2 \\
-1
\end{array}\right]\right)=\left[\begin{array}{r}
0 \\
-7 \\
-2
\end{array}\right], \text { and } L\left(\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right)=\left[\begin{array}{l}
5 \\
4 \\
4
\end{array}\right]
$$

Standard Matrix - The Hard Case (Motivation)

Given $L\left(\left[\begin{array}{r}2 \\ -1\end{array}\right]\right)=\left[\begin{array}{r}0 \\ -7 \\ -2\end{array}\right]$, and $L\left(\left[\begin{array}{l}1 \\ 2\end{array}\right]\right)=\left[\begin{array}{l}5 \\ 4 \\ 4\end{array}\right]$, find A s.t. $L(\mathbf{x})=A \mathbf{x}$

$$
\begin{aligned}
& \Longrightarrow\left\{\begin{array}{l}
L\left((2)\left[\begin{array}{l}
1 \\
0
\end{array}\right]+(-1)\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{r}
0 \\
-7 \\
-2
\end{array}\right] \\
L\left((1)\left[\begin{array}{l}
1 \\
0
\end{array}\right]+(2)\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
5 \\
4 \\
4
\end{array}\right] \\
\Longrightarrow\left\{\begin{array}{l}
(2) L\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)+(-1) L\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{r}
0 \\
-7 \\
-2
\end{array}\right] \quad \text { (ruperp } \\
(1) L\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)+(2) L\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
5 \\
4 \\
4
\end{array}\right] \quad \text { Princ }
\end{array}\right. \\
\Longrightarrow\left[\begin{array}{rr|r}
2 & -1 & (0,-7,-2)^{T} \\
1 & 2 & (5,4,4)^{T}
\end{array}\right] \xrightarrow{\text { Gauss-Jordan }}\left[\begin{array}{cc|c}
1 & 0 & (1,-2,0)^{T} \\
0 & 1 & (2,3,2)^{T}
\end{array}\right]
\end{array}\right.
\end{aligned}
$$

Standard Matrix - The Hard Case (Motivation)

Given $L\left(\left[\begin{array}{r}2 \\ -1\end{array}\right]\right)=\left[\begin{array}{r}0 \\ -7 \\ -2\end{array}\right]$, and $L\left(\left[\begin{array}{l}1 \\ 2\end{array}\right]\right)=\left[\begin{array}{l}5 \\ 4 \\ 4\end{array}\right]$, find A s.t. $L(\mathbf{x})=A \mathbf{x}$

$$
\Longrightarrow\left[\begin{array}{rr|r}
2 & -1 & (0,-7,-2)^{T} \\
1 & 2 & (5,4,4)^{T}
\end{array}\right] \xrightarrow{\text { Gauss-Jordan }}\left[\begin{array}{rc|c}
\hline 1 & 0 & (1,-2,0)^{T} \\
0 & 1 & (2,3,2)^{T}
\end{array}\right]
$$

$$
\Longrightarrow L\left(\mathbf{e}_{1}\right)=L\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{r}
1 \\
-2 \\
0
\end{array}\right], \text { and } L\left(\mathbf{e}_{2}\right)=L\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
2 \\
3 \\
2
\end{array}\right]
$$

$\therefore A=\left[\begin{array}{rr}1 & 2 \\ -2 & 3 \\ 0 & 2\end{array}\right] \Longrightarrow L\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{rr}1 & 2 \\ -2 & 3 \\ 0 & 2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$

Finding the Standard Matrix - Hard Case

Proposition

(Finding the Standard Matrix - Hard Case)
GIVEN: Linear Transformation L s.t. images $L\left(\mathbf{b}_{1}\right), \ldots, L\left(\mathbf{b}_{n}\right)$ are provided. where $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ is a non-standard basis for \mathbb{R}^{n}.
TASK: Find Standard Matrix $A \in \mathbb{R}^{m \times n}$ s.t. $L(\mathbf{x})=A \mathbf{x}$
(1) $\left[\begin{array}{ccc|c}- & \mathbf{b}_{1} & - & L\left(\mathbf{b}_{1}\right) \\ & \vdots & & \vdots \\ - & \mathbf{b}_{n} & - & L\left(\mathbf{b}_{n}\right)\end{array}\right] \xrightarrow{\text { Gauss-Jordan }}\left[\begin{array}{c|c}L\left(\mathbf{e}_{1}\right) \\ I & \vdots \\ L\left(\mathbf{e}_{n}\right)\end{array}\right]$

NOTE: Write non-standard basis vectors $\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}$ as row vectors.
NOTE: Write the images $L\left(\mathbf{b}_{1}\right), \ldots, L\left(\mathbf{b}_{n}\right)$ as transposes to avoid confusion.
(2) $A=\left[\begin{array}{ccc}\mid & & \mid \\ L\left(\mathbf{e}_{1}\right) & \cdots & L\left(\mathbf{e}_{n}\right) \\ \mid & & \mid\end{array}\right]$

Isomorphisms (Review)

Vector spaces $\mathbb{R}^{4}, \mathbb{R}^{2 \times 2}, P_{3}$ are all isomorphic to each other since there exists isomorphisms L_{1}, L_{2} as shown below:

$$
\begin{aligned}
& \text { Let } L_{1}: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}^{4} \text { s.t. } L_{1}\left(\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\right)=\left[\begin{array}{l}
a_{11} \\
a_{12} \\
a_{21} \\
a_{22}
\end{array}\right] \\
& \text { Let } L_{2}: P_{3} \rightarrow \mathbb{R}^{4} \text { s.t. } L_{2}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}\right)=\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]
\end{aligned}
$$

Isomorphic vector spaces are essentially "the same" but with representations by different mathematical objects (vectors, matrices, polynomials.)

In particular, matrices \& polynomials can be represented by vectors, which will be quite useful now....
NOTATION: $P_{3} \simeq \mathbb{R}^{4}$ means ' P_{3} is isomorphic to \mathbb{R}^{4}

Linear Transformations involving Calculus

Differentiation \& integration are in fact linear transformations:

$$
\begin{array}{cc}
\frac{d}{d x}[f(x)+g(x)]=f^{\prime}(x)+g^{\prime}(x) & \frac{d}{d x}[\alpha f(x)]=\alpha f^{\prime}(x) \\
\int[f(x)+g(x)] d x=\int f(x) d x+\int g(x) d x & \int[\alpha f(x)] d x=\alpha \int f(x) d x \\
\int_{a}^{b}[f(x)+g(x)] d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x & \int_{a}^{b}[\alpha f(x)] d x=\alpha \int_{a}^{b} f(x) d x
\end{array}
$$

If one restricts attention to a vector space of polynomials, P_{n}, this means that differentation \& integration can be represented by standard matrices!!

QUESTION: How to find the standard matrix for calculus of polynomials? ANSWER: Recognize that P_{n} is isomorphic to \mathbb{R}^{n+1}.

Linear Transformations involving Calculus

WEX 6-3-1: Find standard matrix A for linear transformation $L: P_{2} \rightarrow P_{1}$ s.t.

$$
L(p)=p^{\prime}(t)
$$

Linear Transformations involving Calculus

WEX 6-3-1: Find standard matrix A for linear transformation $L: P_{2} \rightarrow P_{1}$ s.t.

$$
L(p)=p^{\prime}(t)
$$

Find derivative of arbitrary polynomial in $P_{2}: \quad \frac{d}{d t}\left[a+b t+c t^{2}\right]=b+2 c t$ Apply isomorphisms: $a+b t+c t^{2} \simeq\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ and $b+2 c t \simeq\left[\begin{array}{c}b \\ 2 c\end{array}\right]$
Then: $A\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=\left[\begin{array}{c}b \\ 2 c\end{array}\right] \Longrightarrow A$ is $2 \times 3 \Longrightarrow\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right]\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=\left[\begin{array}{c}b \\ 2 c\end{array}\right]$
$\therefore A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right]=\left[\begin{array}{ccc}\mid & \mid & \mid \\ L\left(\mathbf{e}_{1}\right) & L\left(\mathbf{e}_{2}\right) & L\left(\mathbf{e}_{3}\right) \\ \mid & \mid & \mid\end{array}\right]$ where $\begin{aligned} & \mathbf{e}_{1}=1 \\ & \mathbf{e}_{2}=t \\ & \mathbf{e}_{3}=t^{2}\end{aligned}$
$L\left(\mathbf{e}_{1}\right)=0 \simeq\left[\begin{array}{l}0 \\ 0\end{array}\right], L\left(\mathbf{e}_{2}\right)=\frac{d}{d t}[t]=1 \simeq\left[\begin{array}{l}1 \\ 0\end{array}\right], L\left(\mathbf{e}_{3}\right)=\frac{d}{d t}\left[t^{2}\right]=2 t \simeq\left[\begin{array}{l}0 \\ 2\end{array}\right]$

Finding the Standard Matrix for Calculus (Procedure)

Proposition

(Finding the Standard Matrix for Linear Transformations involving Calculus)
GIVEN: Linear Transformation $L: P_{n} \rightarrow P_{m}$ s.t. L involves calculus.
TASK: Find Standard Matrix A s.t. $L(\mathbf{x})=A \mathbf{x}$
(1) Compute images $L\left(\mathbf{e}_{1}\right), L\left(\mathbf{e}_{2}\right), \ldots, L\left(\mathbf{e}_{n+1}\right)$.
(2) Produce the isomorphisms of these images in P_{m} to images in \mathbb{R}^{m+1} :

$$
\left[L\left(\mathbf{e}_{1}\right)\right]_{\mathcal{E}^{\prime}},\left[L\left(\mathbf{e}_{2}\right)\right]_{\mathcal{E}^{\prime}}, \ldots,\left[L\left(\mathbf{e}_{n+1}\right)\right]_{\mathcal{E}^{\prime}}
$$

(3) $A=\left[\begin{array}{cccc}\mid & \mid & & \mid \\ {\left[L\left(\mathbf{e}_{1}\right)\right]_{\mathcal{E}^{\prime}}} & {\left[L\left(\mathbf{e}_{2}\right)\right]_{\mathcal{E}^{\prime}}} & \cdots & {\left[L\left(\mathbf{e}_{n+1}\right)\right]_{\mathcal{E}^{\prime}}} \\ \mid & \mid & & \mid\end{array}\right]$
$\mathcal{E}=\left\{1, t, t^{2}, \ldots, t^{n}\right\} \equiv\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n+1}\right\}$ is standard ordered basis for P_{n}.
$\mathcal{E}^{\prime}=\left\{1, t, t^{2}, \ldots, t^{m}\right\} \equiv\left\{\mathbf{e}_{1}^{\prime}, \mathbf{e}_{2}^{\prime}, \ldots, \mathbf{e}_{m+1}^{\prime}\right\}$ is standard ordered basis for P_{m}.
IMPORTANT: Always write polynomials in ascending order: $3-t+5 t^{2}$

The Value of the Standard Matrix for Calculus

By knowing the standard matrix for the derivative of a quadratic polynomial...

$$
\frac{d}{d t}\left[a+b t+c t^{2}\right] \simeq\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{c}
b \\
2 c
\end{array}\right] \simeq b+2 c t
$$

....derivatives of quadratics can be found simply with a matrix multiplication:

$$
\begin{aligned}
& \frac{d}{d t}\left[t^{2}-t\right] \simeq\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{r}
0 \\
-1 \\
1
\end{array}\right]=\left[\begin{array}{r}
-1 \\
2
\end{array}\right] \simeq 2 t-1 \\
& \frac{d}{d t}[3 t-7] \simeq\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{r}
-7 \\
3 \\
0
\end{array}\right]=\left[\begin{array}{l}
3 \\
0
\end{array}\right] \simeq 3 \\
& \frac{d}{d t}\left[2-4 t^{2}\right] \simeq\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{r}
2 \\
0 \\
-4
\end{array}\right]=\left[\begin{array}{r}
0 \\
-8
\end{array}\right] \simeq-8 t \\
& \frac{d}{d t}[5] \simeq\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{l}
5 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \simeq 0
\end{aligned}
$$

Fin.

