Sqaure Matrices: Eigenvalues, Eigenvectors

Linear Algebra

Josh Engwer

TTU
20 November 2015

PART I:

EIGENVALUES, EIGENVECTORS, EIGENSPACES CASE I: DISTINCT REAL EIGENVALUES

When a Matrix \times Vector effectively Scales the Vector

Consider the following linear transformation $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that

$$
L(\mathbf{x})=A \mathbf{x}, \quad \text { where } \quad A=\left[\begin{array}{rr}
-11 & -7 \\
14 & 10
\end{array}\right]
$$

Then, in particular, if $\mathbf{x}_{1}=(-1,1)^{T}, \mathbf{x}_{2}=(-1,2)^{T}, \mathbf{x}_{3}=(-1,-1)^{T}$:

$$
\begin{gathered}
L\left(\mathbf{x}_{1}\right)=A \mathbf{x}_{1}=\left[\begin{array}{rr}
-11 & -7 \\
14 & 10
\end{array}\right]\left[\begin{array}{r}
-1 \\
1
\end{array}\right]=\left[\begin{array}{r}
4 \\
-4
\end{array}\right]=(-4)\left[\begin{array}{r}
-1 \\
1
\end{array}\right]=-4 \mathbf{x}_{1} \\
- \text { AND -- }
\end{gathered}
$$

$$
L\left(\mathbf{x}_{2}\right)=A \mathbf{x}_{2}=\left[\begin{array}{rr}
-11 & -7 \\
14 & 10
\end{array}\right]\left[\begin{array}{r}
-1 \\
2
\end{array}\right]=\left[\begin{array}{r}
-3 \\
6
\end{array}\right]=(3)\left[\begin{array}{r}
-1 \\
2
\end{array}\right]=3 \mathbf{x}_{2}
$$

—- BUT —-

$$
L\left(\mathbf{x}_{3}\right)=A \mathbf{x}_{3}=\left[\begin{array}{rr}
-11 & -7 \\
14 & 10
\end{array}\right]\left[\begin{array}{l}
-1 \\
-1
\end{array}\right]=\left[\begin{array}{r}
18 \\
-24
\end{array}\right] \neq(\alpha)\left[\begin{array}{l}
-1 \\
-1
\end{array}\right]=\alpha \mathbf{x}_{3}
$$

i.e. The matrix-vector product sometimes reduces to a scalar-vector product!!!

But such behavior does not occur to just any vector one chooses!

When a Matrix \times Vector effectively Scales the Vector

Consider the following linear transformation $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that

$$
L(\mathbf{x})=A \mathbf{x}, \quad \text { where } \quad A=\left[\begin{array}{rr}
-11 & -7 \\
14 & 10
\end{array}\right]
$$

Then, in particular, if $\mathbf{x}_{1}=(-1,1)^{T}, \mathbf{x}_{2}=(-1,2)^{T}, \mathbf{x}_{3}=(-1,-1)^{T}$:

$$
L\left(\mathbf{x}_{1}\right)=A \mathbf{x}_{1}=-4 \mathbf{x}_{1} \quad L\left(\mathbf{x}_{2}\right)=A \mathbf{x}_{2}=3 \mathbf{x}_{2} \quad L\left(\mathbf{x}_{3}\right)=A \mathbf{x}_{3} \neq \alpha \mathbf{x}_{3}
$$

Eigenvalues \& Eigenvectors of a Square Matrix (Def'n)

This "Matrix-Vector product reducing to Scalar-Vector product" behavior occurs with vectors called eigenvectors:

Definition

(Eigenvalues \& Eigenvectors of a Square Matrix)
Let square matrix $A \in \mathbb{R}^{n \times n}$, non-zero vector $\mathbf{x} \in \mathbb{R}^{n}$, and scalar $\lambda \in \mathbb{R}$.
Then λ is an eigenvalue of $A \& \mathbf{x}$ is a corresponding eigenvector of A if

$$
A \mathbf{x}=\lambda \mathbf{x} \quad(\text { where } \mathbf{x} \neq \overrightarrow{\mathbf{0}})
$$

Moreover, the ordered pair (λ, \mathbf{x}) is called an eigenpair of A.
"eigen" is pronounced EYE-gen.
"eigen" comes from German:
"der Eigenwert" means "der Eigenvektor"
"own value" "own vector"

NOTE: Eigenvector $\mathbf{x} \neq \overrightarrow{\mathbf{0}}$ since $A \overrightarrow{\boldsymbol{0}}=\lambda \overrightarrow{\mathbf{0}}$ is true for all scalars $\lambda \in \mathbb{R}$
NOTE: It's possible to have complex eigenpairs (involving $i:=\sqrt{-1}$), however only real eigenpairs will be considered in this course.

More Regarding Eigenvectors

Corollary

Let square matrix $A \in \mathbb{R}^{n \times n}$. Then:
(i) A scalar multiple of an eigenvector is also an eigenvector:
(EIG1) $\quad(\lambda, \mathbf{x})$ is an eigenpair of $A \Longrightarrow(\lambda, \alpha \mathbf{x})$ is an eigenpair of $A \quad(\alpha \neq 0)$
(ii) The sum of two eigenvectors with same eigenvalue is also an eigenvector:
(EIG2) $\left(\lambda, \mathbf{x}_{1}\right),\left(\lambda, \mathbf{x}_{2}\right)$ are eigenpairs of $A \Longrightarrow\left(\lambda, \mathbf{x}_{1}+\mathbf{x}_{2}\right)$ is an eigenpair of A

PROOF:

(i) Let (λ, \mathbf{x}) be an eigenpair of A. Then $A \mathbf{x}=\lambda \mathbf{x}$. Let $\alpha \neq 0$.
$\Longrightarrow A(\alpha \mathbf{x}) \stackrel{M 2}{=} \alpha(A \mathbf{x}) \stackrel{E I G}{=} \alpha(\lambda \mathbf{x}) \stackrel{M 2}{=} \lambda(\alpha \mathbf{x})$
$\Longrightarrow A(\alpha \mathbf{x})=\lambda(\alpha \mathbf{x})$
$\Longrightarrow(\lambda, \alpha \mathbf{x})$ is an eigenpair of A
QED

More Regarding Eigenvectors

Corollary

Let square matrix $A \in \mathbb{R}^{n \times n}$. Then:
(i) A scalar multiple of an eigenvector is also an eigenvector:
(EIG1) $\quad(\lambda, \mathbf{x})$ is an eigenpair of $A \Longrightarrow(\lambda, \alpha \mathbf{x})$ is an eigenpair of $A \quad(\alpha \neq 0)$
(ii) The sum of two eigenvectors with same eigenvalue is also an eigenvector:
(EIG2) $\left(\lambda, \mathbf{x}_{1}\right),\left(\lambda, \mathbf{x}_{2}\right)$ are eigenpairs of $A \Longrightarrow\left(\lambda, \mathbf{x}_{1}+\mathbf{x}_{2}\right)$ is an eigenpair of A

PROOF:

(ii) Let $\left(\lambda, \mathbf{x}_{1}\right),\left(\lambda, \mathbf{x}_{2}\right)$ be eigenpairs of A. Then $A \mathbf{x}_{1}=\lambda \mathbf{x}_{1} \& A \mathbf{x}_{2}=\lambda \mathbf{x}_{2}$
$\Longrightarrow A\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right) \stackrel{M 3}{=} A \mathbf{x}_{1}+A \mathbf{x}_{2} \stackrel{E I G}{=} \lambda \mathbf{x}_{1}+\lambda \mathbf{x}_{2} \stackrel{A 7}{=} \lambda\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right)$
$\Longrightarrow A\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right)=\lambda\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right)$
$\Longrightarrow\left(\lambda, \mathbf{x}_{1}+\mathbf{x}_{2}\right)$ is an eigenpair of A
QED

Eigenspaces of a Square Matrix (Definition)

The previous corollary suggests that the set of all eigenvectors form a subspace provided the zero vector is also included in the set:

Definition

(Eigenspaces of a Square Matrix)
Let square matrix $A \in \mathbb{R}^{n \times n}$ and $\lambda \in \mathbb{R}$ be an eigenvalue of A.
Then the λ-eigenspace of A is the following subspace of \mathbb{R}^{n} :

$$
E_{\lambda}:=\left\{\mathbf{x} \in \mathbb{R}^{n}:(\lambda, \mathbf{x}) \text { is an eigenpair of } A\right\} \cup\{\overrightarrow{\mathbf{0}}\}
$$

i.e. The λ-eigenspace is the set of all eigenvectors of A with eigenvalue λ together with the zero vector (but of course $\overrightarrow{\mathbf{0}}$ is not an eigenvector.)

Finding Eigenvalues, Eigenvectors, Eigenspaces (Motivation)

So, how to find the eigenvalues, eigenvectors, eigenspaces of a matrix??

Let (λ, \mathbf{x}) be an eigenpair of square matrix A.
Then $A \mathbf{x}=\lambda \mathbf{x} \Longleftrightarrow A \mathbf{x}-\lambda \mathbf{x}=\overrightarrow{\mathbf{0}} \Longleftrightarrow A \mathbf{x}-\lambda I \mathbf{x}=\overrightarrow{\mathbf{0}} \stackrel{M 4}{\Longleftrightarrow}(A-\lambda I) \mathbf{x}=\overrightarrow{\mathbf{0}}$ where I is the $n \times n$ identity matrix.
Now, $(A-\lambda I) \mathbf{x}=\overrightarrow{\mathbf{0}}$ is a $n \times n$ homogeneous linear system, which recall means that it automatically has the trivial solution $\mathbf{x}=\overrightarrow{\mathbf{0}}$.
However, since $\mathbf{x}=\overrightarrow{\mathbf{0}}$ is not an eigenvector of A, the linear system $(A-\lambda I) \mathbf{x}=\overrightarrow{\mathbf{0}}$ must have non-trivial solns.
In order for $(A-\lambda I) \mathbf{x}=\overrightarrow{\mathbf{0}}$ to have non-trivial solutions, the $n \times n$ matrix $(A-\lambda I)$ must not be invertible $\Longleftrightarrow \operatorname{det}(A-\lambda I)=0$
$\therefore \quad(\lambda, \mathbf{x})$ is an eigenpair of square matrix $A \Longleftrightarrow \operatorname{det}(A-\lambda I)=0$

Characteristic Polynomial of a Square Matrix

(λ, \mathbf{x}) is an eigenpair of square matrix $A \Longleftrightarrow \operatorname{det}(A-\lambda I)=0$
Now, the unknown in the equation $\operatorname{det}(A-\lambda I)=0$ is λ.
Recall that computing a determinant involves only additions \& multiplications. So, the expression $\operatorname{det}(A-\lambda I)$ is a polynomial in λ (and has a special name):

Definition

(Characteristic Polynomial of a Square Matrix)
Let square matrix $A \in \mathbb{R}^{n \times n}$ and $\lambda \in \mathbb{R}$ be an eigenvalue of A.
Then the characteristic polynomial of A is defined to be:

$$
p_{A}(\lambda):=\operatorname{det}(\lambda I-A)=(-1)^{n} \operatorname{det}(A-\lambda I)
$$

Moreover, $p_{A}(\lambda)$ is a polynomial in λ of degree n. Moreover, the equation $p_{A}(\lambda)=0$ is called the characteristic equation for A.

REMARK: Use $\operatorname{det}(\lambda I-A)$ for proofs $\& \operatorname{det}(A-\lambda I)$ for computations.
NOTE: For $n \geq 3$, unless A is sparse, $p_{A}(\lambda)$ will be provided $\&$ factored a priori.

CASE I: Distinct Real Eigenvalues

Theorem

(Eigenvalues, Eigenvectors, and the Characteristic Polynomial)
Let square matrix $A \in \mathbb{R}^{n \times n}$, non-zero vector $\mathbf{x} \in \mathbb{R}^{n}$, scalar $\lambda \in \mathbb{R}$. Then:
(i) λ is an eigenvalue of $A \Longleftrightarrow p_{A}(\lambda)=0 \Longleftrightarrow \operatorname{det}(A-\lambda I)=0$
(ii) \mathbf{x} is an eigenvector of $A \Longleftrightarrow(\lambda I-A) \mathbf{x}=\overrightarrow{\mathbf{0}} \Longleftrightarrow(A-\lambda I) \mathbf{x}=\overrightarrow{\mathbf{0}}$

It's possible for some eigenvalues to be equal and have several linearly independent corresponding eigenvectors.
For now, let's consider the simpler case where all eigenvalues are distinct:

Theorem

(Distinct Real Eigenvalues)
Let square matrix $A \in \mathbb{R}^{n \times n}$ s.t. all eigenvalues are real \& distinct. Then:
A has n eigenpairs $\left(\lambda_{1}, \mathbf{x}_{1}\right),\left(\lambda_{2}, \mathbf{x}_{2}\right), \cdots,\left(\lambda_{n}, \mathbf{x}_{n}\right)$ s.t. $\lambda_{1}<\lambda_{2}<\cdots<\lambda_{n}$. i.e. Distinct eigenvalue λ_{k} has one distinct eigenvector \mathbf{x}_{k} s.t. $A \mathbf{x}_{k}=\lambda_{k} \mathbf{x}_{k}$.

CASE I: Distinct Real Eigenvalues (Procedure)

Proposition

(Finding Eigenvalues, Eigenvectors, Eigenspaces - Distinct Real Eigenvalues)
GIVEN: Square Matrix $A \in \mathbb{R}^{n \times n}$ s.t. all eigenvalues are real \& distinct. TASK: Find the Eigenvalues λ_{k}, Eigenvectors \mathbf{x}_{k}, Eigenspaces $E_{\lambda_{k}}$ of A.
(1) Find Characteristic Polynomial $p_{A}(\lambda)=(-1)^{n} \operatorname{det}(A-\lambda I)$
(2) Solve Characteristic Eqn $\operatorname{det}(A-\lambda I)=0$ to find Eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$
(3) Find the Eigenspace for each Eigenvalue $\lambda_{k}: E_{\lambda_{k}}=\operatorname{Null} \operatorname{Sp}\left(A-\lambda_{k} I\right)$
(4) Find an Eigenvector for each Eigenvalue $\lambda_{k}: \mathbf{x}_{k}=$ (basis vector for $E_{\lambda_{k}}$)

SANITY CHECKS: $A \mathbf{x}_{k}=\lambda_{k} \mathbf{x}_{k}, \operatorname{dim}\left(E_{\lambda_{k}}\right)=1, \mathbf{x}_{k}$'s are distinct and non-zero

$$
p_{A}(\lambda)=\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right) \cdots\left(\lambda-\lambda_{n}\right)
$$

REMARK: It's convention for eigenvalues to be indexed in increasing order:

$$
\lambda_{1}<\lambda_{2}<\cdots<\lambda_{n-1}<\lambda_{n} .
$$

Eigenvalues of Diagonal \& Triangular Matrices

It turns out the eigenvalues of a triangular matrix are immediate:

Proposition

(Eigenvalues of a Triangular Matrix)
The eigenvalues of a triangular matrix are the main diagonal entries.

Recall that a diagonal matrix is a special triangular matrix:

Proposition

(Eigenvalues of a Diagonal Matrix)
The eigenvalues of a diagonal matrix are the main diagonal entries.
WEX 7-1-1: Find the eigenvalues $\lambda_{1}<\lambda_{2}$ of the matrices

$$
A=\left[\begin{array}{ll}
1 & 4 \\
0 & 3
\end{array}\right], \quad B=\left[\begin{array}{rr}
-1 & 0 \\
8 & -6
\end{array}\right], \quad C=\left[\begin{array}{ll}
7 & 0 \\
0 & 5
\end{array}\right]
$$

Matrix $A: \begin{aligned} & \lambda_{1}=1 \\ & \lambda_{2}=3\end{aligned}$
Matrix $B: \quad \lambda_{1}=-6$
Matrix $C: \quad \lambda_{1}=5$
$\lambda_{2}=-1$
$\lambda_{2}=7$

PART II:

EIGENVALUES, EIGENVECTORS, EIGENSPACES CASE II: REPEATED REAL EIGENVALUES DEFECTIVE MATRICES

Case II: Repeated Real Eigenvalues (Motivation)

Consider the following diagonal matrices:

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right], \quad B=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 3
\end{array}\right], \quad C=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Then A, B, C have the following eigenvalues:

$$
\begin{array}{lll}
& \lambda_{1}=1 \\
\text { Matrix } A: & \lambda_{2}=2 \\
& \lambda_{3}=3
\end{array}, \begin{aligned}
& \text { Matrix } B: \\
& \lambda_{2}=1 \\
& \lambda_{3}=3
\end{aligned}, \begin{aligned}
& \lambda_{1}=1 \\
& \\
&
\end{aligned}, \begin{aligned}
& \text { Matrix } C: \begin{array}{l}
\lambda_{2}=1 \\
\lambda_{3}=1
\end{array} \\
& \hline
\end{aligned}
$$

Moreover A, B, C have the following characteristic polynomials:

$$
\begin{aligned}
& \text { Matrix } A: p_{A}(\lambda)=\operatorname{det}(\lambda I-A)=(\lambda-1)(\lambda-2)(\lambda-3) \\
& \text { Matrix } B: p_{B}(\lambda)=\operatorname{det}(\lambda I-B)=(\lambda-1)^{2}(\lambda-3) \\
& \text { Matrix } C: p_{C}(\lambda)=\operatorname{det}(\lambda I-C)=(\lambda-1)^{3}
\end{aligned}
$$

Notice repeated eigenvalues in B, C lead to repeated factors in $p_{B}(\lambda), p_{C}(\lambda)$.

Case II: Repeated Real Eigenvalues (Motivation)

Consider the following diagonal matrices:

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right], \quad B=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 3
\end{array}\right], \quad C=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Then A, B, C have the following eigenvalues:

$$
\lambda_{1}=1 \quad \lambda_{1}=1 \quad \lambda_{1}=1
$$

Matrix $A: \quad \lambda_{2}=2, \quad$ Matrix $B: \quad \lambda_{2}=1, \quad$ Matrix $C: \quad \lambda_{2}=1$

$$
\begin{array}{lll}
\lambda_{3}=3 & \lambda_{3}=3 & \lambda_{3}=1
\end{array}
$$

Moreover, A has the following eigenspaces:
$\operatorname{Mtx} A: E_{\lambda_{1}}=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right\}, E_{\lambda_{2}}=\operatorname{span}\left\{\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\}, E_{\lambda_{3}}=\operatorname{span}\left\{\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$
Finally, A has the following eigenvectors:

$$
\text { Matrix } A: \mathbf{x}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \mathbf{x}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \mathbf{x}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Case II: Repeated Real Eigenvalues (Motivation)

Consider the following diagonal matrices:

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right], \quad B=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 3
\end{array}\right], \quad C=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Then A, B, C have the following eigenvalues:

$$
\begin{array}{lll}
\lambda_{1}=1 & \lambda_{1}=1 & \lambda_{1}=1
\end{array}
$$

Matrix A: $\quad \lambda_{2}=2, \quad$ Matrix $B: \quad \lambda_{2}=1, \quad$ Matrix $C: \quad \lambda_{2}=1$

$$
\begin{array}{lll}
\lambda_{3}=3 & \lambda_{3}=3 & \lambda_{3}=1
\end{array}
$$

Moreover, B has the following eigenspaces:

$$
\text { Matrix } B: E_{\lambda_{1}}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right\}, E_{\lambda_{3}}=\operatorname{span}\left\{\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}
$$

Finally, B has the following eigenvectors:

$$
\text { Matrix } B: \mathbf{x}_{1,1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \mathbf{x}_{1,2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \mathbf{x}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Case II: Repeated Real Eigenvalues (Motivation)

Consider the following diagonal matrices:

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right], \quad B=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 3
\end{array}\right], \quad C=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Then A, B, C have the following eigenvalues:

$$
\begin{array}{lll}
\lambda_{1}=1 & \lambda_{1}=1 & \lambda_{1}=1
\end{array}
$$

Matrix A: $\quad \lambda_{2}=2, \quad$ Matrix $B: \quad \lambda_{2}=1, \quad$ Matrix $C: \quad \lambda_{2}=1$

$$
\begin{array}{lll}
\lambda_{3}=3 & \lambda_{3}=3 & \lambda_{3}=1
\end{array}
$$

Moreover, C has the following eigenspaces:

$$
\text { Matrix } C: E_{\lambda_{1}}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}
$$

Finally, C has the following eigenvectors:

$$
\text { Matrix } C: \mathbf{x}_{1,1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \mathbf{x}_{1,2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \mathbf{x}_{1,3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Multiplicities of an Eigenvalue (Definition)

When presented with repeated eigenvalue(s), multiplicities are useful:

Definition

(Multiplicities of an Eigenvalue)
Let matrix $A \in \mathbb{R}^{n \times n}$ have (repeated) real eigenvalues $\lambda_{1}<\lambda_{2}<\cdots<\lambda_{p}$ Moreover, let A have the following factored characteristic polynomial

$$
p_{A}(\lambda)=\left(\lambda-\lambda_{1}\right)^{m_{1}}\left(\lambda-\lambda_{2}\right)^{m_{2}} \cdots\left(\lambda-\lambda_{p}\right)^{m_{p}}\left(\text { where } m_{1}, \ldots, m_{p} \in \mathbb{Z}_{+}\right)
$$

The algebraic multiplicity (AM) of eigenvalue λ_{k} is m_{k}.
The geometric multiplicity (GM) of eigenvalue λ_{k} is $\operatorname{dim}\left(E_{\lambda_{k}}\right)$.
i.e. $\operatorname{AM}\left[\lambda_{k}\right]:=m_{k}=\#$ occurrences of $\lambda_{k}=$ power of factor $\left(\lambda-\lambda_{k}\right)$ in $p_{A}(\lambda)$.
i.e. $\operatorname{GM}\left[\lambda_{k}\right]:=\operatorname{dim}\left(E_{\lambda_{k}}\right)=\#$ basis vectors of eigenspace $E_{\lambda_{k}}$.

NOTATION: $\mathbb{Z}_{+} \equiv\{$ positive integers $\}=\{1,2,3,4,5, \cdots\}$

Multiplicities of an Eigenvalue (Examples)

Consider the following diagonal matrices:

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right], \quad B=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 3
\end{array}\right], \quad C=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Then A, B, C have the following eigenvalues:

$$
\lambda_{1}=1
$$

Matrix $A: \begin{aligned} & \lambda_{1}=1 \\ & \lambda_{2}=2 \\ & \lambda_{3}=3\end{aligned}$, Matrix $B: \begin{aligned} & \lambda_{1}=1 \\ & \lambda_{2}=3\end{aligned}$, Matrix $C: \quad \lambda_{1}=1$
Moreover, A has the following characteristic polynomial:

$$
\text { Matrix } A: p_{A}(\lambda)=\operatorname{det}(\lambda I-A)=(\lambda-1)(\lambda-2)(\lambda-3)
$$

Then the eigenvalues of A have the following algebraic multiplicities:

$$
\operatorname{AM}\left[\lambda_{1}\right]=1, \quad \operatorname{AM}\left[\lambda_{2}\right]=1, \quad \operatorname{AM}\left[\lambda_{3}\right]=1
$$

Multiplicities of an Eigenvalue (Examples)

Consider the following diagonal matrices:

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right], \quad B=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 3
\end{array}\right], \quad C=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Then A, B, C have the following eigenvalues:

$$
\lambda_{1}=1
$$

Matrix $A: \begin{aligned} & \lambda_{1}=1 \\ & \lambda_{2}=2 \\ & \lambda_{3}=3\end{aligned}$, Matrix $B: \begin{aligned} & \lambda_{1}=1 \\ & \lambda_{2}=3\end{aligned}$, Matrix $C: \quad \lambda_{1}=1$
Moreover, B has the following characteristic polynomial:

$$
\text { Matrix } B: p_{B}(\lambda)=\operatorname{det}(\lambda I-B)=(\lambda-1)^{2}(\lambda-3)
$$

Then the eigenvalues of B have the following algebraic multiplicities:

$$
\operatorname{AM}\left[\lambda_{1}\right]=2, \quad \mathrm{AM}\left[\lambda_{2}\right]=1
$$

Multiplicities of an Eigenvalue (Examples)

Consider the following diagonal matrices:

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right], \quad B=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 3
\end{array}\right], \quad C=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Then A, B, C have the following eigenvalues:

$$
\lambda_{1}=1
$$

Matrix $A: \begin{aligned} & \lambda_{1}=1 \\ & \lambda_{2}=2 \\ & \lambda_{3}=3\end{aligned}$, Matrix $B: \begin{aligned} & \lambda_{1}=1 \\ & \lambda_{2}=3\end{aligned}$, Matrix $C: \quad \lambda_{1}=1$
Moreover, C has the following characteristic polynomial:

$$
\text { Matrix } C: p_{C}(\lambda)=\operatorname{det}(\lambda I-C)=(\lambda-1)^{3}
$$

Then the eigenvalue of C has the following algebraic multiplicity:

$$
\mathrm{AM}\left[\lambda_{1}\right]=3
$$

Multiplicities of an Eigenvalue (Examples)

Consider the following diagonal matrices:

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right], \quad B=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 3
\end{array}\right], \quad C=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Then A, B, C have the following eigenvalues:

$$
\lambda_{1}=1
$$

Matrix $A: \begin{aligned} & \lambda_{1}=1 \\ & \lambda_{2}=2, ~ M a t r i x ~ \\ & \\ & \lambda_{3}=3\end{aligned}, \begin{aligned} & \lambda_{1}=1 \\ & \lambda_{2}=3\end{aligned}$, Matrix $C: \quad \lambda_{1}=1$
Moreover, A has the following eigenspaces:
$\operatorname{Mtx} A: E_{\lambda_{1}}=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right\}, E_{\lambda_{2}}=\operatorname{span}\left\{\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\}, E_{\lambda_{3}}=\operatorname{span}\left\{\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$
Then the eigenvalues of A have the following geometric multiplicities:

$$
\operatorname{GM}\left[\lambda_{1}\right]=1, \quad \operatorname{GM}\left[\lambda_{2}\right]=1, \quad \operatorname{GM}\left[\lambda_{3}\right]=1
$$

Multiplicities of an Eigenvalue (Examples)

Consider the following diagonal matrices:

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right], \quad B=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 3
\end{array}\right], \quad C=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Then A, B, C have the following eigenvalues:

$$
\lambda_{1}=1
$$

Matrix $A: \begin{aligned} & \lambda_{1}=1 \\ & \lambda_{2}=2 \\ & \lambda_{3}=3\end{aligned}$, Matrix $B: \begin{aligned} & \lambda_{1}=1 \\ & \lambda_{2}=3\end{aligned}$, Matrix $C: \quad \lambda_{1}=1$
Moreover, B has the following eigenspaces:

$$
\text { Matrix } B: E_{\lambda_{1}}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right\}, E_{\lambda_{2}}=\operatorname{span}\left\{\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}
$$

Then the eigenvalues of B have the following geometric multiplicities:

$$
\operatorname{GM}\left[\lambda_{1}\right]=2, \quad \operatorname{GM}\left[\lambda_{2}\right]=1
$$

Multiplicities of an Eigenvalue (Examples)

Consider the following diagonal matrices:

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right], \quad B=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 3
\end{array}\right], \quad C=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Then A, B, C have the following eigenvalues:

$$
\lambda_{1}=1
$$

Matrix $A: \begin{aligned} & \lambda_{1}=1 \\ & \lambda_{2}=2, ~ M a t r i x ~ \\ & \\ & \lambda_{3}=3\end{aligned}, \begin{aligned} & \lambda_{1}=1 \\ & \lambda_{2}=3\end{aligned}$, Matrix $C: \quad \lambda_{1}=1$
Moreover, C has the following eigenspaces:

$$
\text { Matrix } C: E_{\lambda_{1}}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}
$$

Then the eigenvalue of C has the following geometric multiplicity:

$$
\operatorname{GM}\left[\lambda_{1}\right]=3
$$

Multiplicities of an Eigenvalue (Examples)

Consider the following diagonal matrices:

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right], \quad B=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 3
\end{array}\right], \quad C=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Then A, B, C have the following eigenvalues:

$$
\lambda_{1}=1
$$

Matrix $A: \begin{aligned} & \lambda_{2}=2, \text { Matrix } B: \begin{array}{l}\lambda_{1}=1 \\ \lambda_{2}=3\end{array}, \text { Matrix } C: \quad \lambda_{1}=1 \\ & \lambda_{3}=3\end{aligned}, \begin{aligned} & \\ & \end{aligned}$
To summarize the multiplicities for the eigenvalues of A :
Matrix $A: \quad \mathrm{AM}\left[\lambda_{1}\right]=1, \quad \operatorname{GM}\left[\lambda_{1}\right]=1 \quad \Longrightarrow \quad \mathrm{AM}\left[\lambda_{1}\right]=\operatorname{GM}\left[\lambda_{1}\right]$
Matrix $A: \quad \mathrm{AM}\left[\lambda_{2}\right]=1, \quad \mathrm{GM}\left[\lambda_{2}\right]=1 \quad \Longrightarrow \quad \mathrm{AM}\left[\lambda_{2}\right]=\operatorname{GM}\left[\lambda_{2}\right]$
Matrix $A: \quad \mathrm{AM}\left[\lambda_{3}\right]=1, \quad \operatorname{GM}\left[\lambda_{3}\right]=1 \quad \Longrightarrow \quad \mathrm{AM}\left[\lambda_{3}\right]=\operatorname{GM}\left[\lambda_{3}\right]$
Is it always true that $\mathrm{AM}\left[\lambda_{k}\right]=\operatorname{GM}\left[\lambda_{k}\right]$???? Seems plausible...

Multiplicities of an Eigenvalue (Examples)

Consider the following diagonal matrices:

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right], \quad B=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 3
\end{array}\right], \quad C=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Then A, B, C have the following eigenvalues:

$$
\lambda_{1}=1
$$

Matrix $A: \begin{aligned} & \lambda_{2}=2 \\ & \lambda_{3}=3\end{aligned}$, Matrix $B: \begin{aligned} & \lambda_{1}=1 \\ & \lambda_{2}=3\end{aligned}$, Matrix $C: \quad \lambda_{1}=1$
To summarize the multiplicities for the eigenvalues of B :
Matrix $B: \quad \mathrm{AM}\left[\lambda_{1}\right]=2, \quad \mathrm{GM}\left[\lambda_{1}\right]=2 \quad \Longrightarrow \quad \mathrm{AM}\left[\lambda_{1}\right]=\mathrm{GM}\left[\lambda_{1}\right]$
Matrix $B: \quad \mathrm{AM}\left[\lambda_{2}\right]=1, \quad \mathrm{GM}\left[\lambda_{2}\right]=1 \quad \Longrightarrow \quad \mathrm{AM}\left[\lambda_{2}\right]=\mathrm{GM}\left[\lambda_{2}\right]$
Is it always true that $\mathrm{AM}\left[\lambda_{k}\right]=\operatorname{GM}\left[\lambda_{k}\right]$???? Seems plausible...

Multiplicities of an Eigenvalue (Examples)

Consider the following diagonal matrices:

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right], \quad B=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 3
\end{array}\right], \quad C=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Then A, B, C have the following eigenvalues:
$\begin{array}{ll} & \lambda_{1}=1 \\ \text { Matrix } A: & \lambda_{2}=2, ~ M a t r i x ~ \\ & \lambda_{3}=3\end{array}, \begin{aligned} & \lambda_{1}=1 \\ & \lambda_{2}=3\end{aligned}$, Matrix $C: \quad \lambda_{1}=1$
To summarize the multiplicities for the eigenvalues of C :
Matrix $C: \quad \mathrm{AM}\left[\lambda_{1}\right]=3, \quad \mathrm{GM}\left[\lambda_{1}\right]=3 \quad \Longrightarrow \quad \mathrm{AM}\left[\lambda_{1}\right]=\operatorname{GM}\left[\lambda_{1}\right]$
Is it always true that $\mathrm{AM}\left[\lambda_{k}\right]=\operatorname{GM}\left[\lambda_{k}\right]$???? Seems plausible...

Multiplicities of an Eigenvalue (Shocking Examples!)

Consider the following upper triangular matrices:

$$
D=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad E=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right], \quad F=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

Then D, E, F have the exact same eigenvalue \& AM: $\lambda_{1}=1$ Moreover, D, E, F have the exact same characteristic polynomial:

$$
p_{D}(\lambda)=p_{E}(\lambda)=p_{F}(\lambda)=\left(\lambda-\lambda_{1}\right)^{3}=(\lambda-1)^{3} \Longrightarrow \mathrm{AM}\left[\lambda_{1}\right]=3
$$

Moreover, D has the following eigenspace:

$$
\text { Matrix } D: E_{\lambda_{1}}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}
$$

Then the eigenvalue of D has the following geometric multiplicity: $\operatorname{GM}\left[\lambda_{1}\right]=2$

Multiplicities of an Eigenvalue (Shocking Examples!)

Consider the following upper triangular matrices:

$$
D=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad E=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right], \quad F=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

Then D, E, F have the exact same eigenvalue \& AM: $\quad \lambda_{1}=1$ Moreover, D, E, F have the exact same characteristic polynomial:

$$
p_{D}(\lambda)=p_{E}(\lambda)=p_{F}(\lambda)=\left(\lambda-\lambda_{1}\right)^{3}=(\lambda-1)^{3} \Longrightarrow \mathrm{AM}\left[\lambda_{1}\right]=3
$$

Moreover, E has the following eigenspace:

$$
\text { Matrix } E: E_{\lambda_{1}}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right\}
$$

Then the eigenvalue of E has the following geometric multiplicity: $\operatorname{GM}\left[\lambda_{1}\right]=2$

Multiplicities of an Eigenvalue (Shocking Examples!)

Consider the following upper triangular matrices:

$$
D=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad E=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right], \quad F=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

Then D, E, F have the exact same eigenvalue \& AM: $\quad \lambda_{1}=1$ Moreover, D, E, F have the exact same characteristic polynomial:

$$
p_{D}(\lambda)=p_{E}(\lambda)=p_{F}(\lambda)=\left(\lambda-\lambda_{1}\right)^{3}=(\lambda-1)^{3} \Longrightarrow \mathrm{AM}\left[\lambda_{1}\right]=3
$$

Moreover, F has the following eigenspace:

$$
\text { Matrix } F: E_{\lambda_{1}}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right\}
$$

Then the eigenvalue of F has the following geometric multiplicity: $\operatorname{GM}\left[\lambda_{1}\right]=1$

Multiplicities of an Eigenvalue (Shocking Examples!)

Consider the following upper triangular matrices:

$$
D=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad E=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right], \quad F=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

Then D, E, F have the exact same eigenvalue \& AM: $\quad \lambda_{1}=1$ Moreover, D, E, F have the exact same characteristic polynomial:

$$
p_{D}(\lambda)=p_{E}(\lambda)=p_{F}(\lambda)=\left(\lambda-\lambda_{1}\right)^{3}=(\lambda-1)^{3} \Longrightarrow \mathrm{AM}\left[\lambda_{1}\right]=3
$$

To summarize the multiplicities for the eigenvalues of D, E, F :
Matrix $D: \quad \mathrm{AM}\left[\lambda_{1}\right]=3, \quad \operatorname{GM}\left[\lambda_{1}\right]=2 \quad \Longrightarrow \quad \mathrm{AM}\left[\lambda_{1}\right]>\operatorname{GM}\left[\lambda_{1}\right]$
Matrix $E: \quad \mathrm{AM}\left[\lambda_{1}\right]=3, \quad \mathrm{GM}\left[\lambda_{1}\right]=2 \quad \Longrightarrow \quad \mathrm{AM}\left[\lambda_{1}\right]>\operatorname{GM}\left[\lambda_{1}\right]$
Matrix $F: \quad \mathrm{AM}\left[\lambda_{1}\right]=3, \quad \operatorname{GM}\left[\lambda_{1}\right]=1 \quad \Longrightarrow \quad \mathrm{AM}\left[\lambda_{1}\right]>\operatorname{GM}\left[\lambda_{1}\right]$
Is it always true that $\mathrm{AM}\left[\lambda_{k}\right]=\mathrm{GM}\left[\lambda_{k}\right]$???? \quad A resounding NO!!!!!

Defective Matrices (Definition)

So what matrices have eigenvalue(s) with differing AM \& GM???

Definition

(Defective Matrix)
Let square matrix $A \in \mathbb{R}^{n \times n}$ have eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}$. Then:
A is a defective matrix if at least one eigenvalue λ_{k} satisfies $\operatorname{AM}\left[\lambda_{k}\right]>\operatorname{GM}\left[\lambda_{k}\right]$
i.e. There's fewer linearly indep. eigenvectors for λ_{k} than \# occurrences of λ_{k}.

The following matrices encountered earlier are defective:

$$
D=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad E=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right], \quad F=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

CASE II: Repeated Real Eigenvalues (Procedure)

The procedure for CASE II is the same as for CASE I:

Proposition

(Find Eigenvalues, Eigenvectors, Eigenspaces - Repeated Real Eigenvalues)
GIVEN: Square Matrix $A \in \mathbb{R}^{n \times n}$ s.t. all eigenvalues are real, some repeated.
TASK: Find the Eigenvalues λ_{k}, Eigenvectors \mathbf{x}_{k}, Eigenspaces $E_{\lambda_{k}}$ of A.
(1) Find Characteristic Polynomial $p_{A}(\lambda)=(-1)^{n} \operatorname{det}(A-\lambda I)$
(2) Solve Characteristic Eqn $p_{A}(\lambda)=0$ to find Eigenvalues $\lambda_{1}, \ldots, \lambda_{p}(p<n)$
(3) Find the Eigenspace for each Eigenvalue $\lambda_{k}: E_{\lambda_{k}}=\operatorname{Null} \operatorname{Sp}\left(A-\lambda_{k} I\right)$
(4) Find an Eigenvector for each λ_{k}.

If distinct $\lambda_{k}: \quad \mathbf{x}_{k}=$ (basis vector for $E_{\lambda_{k}}$) If repeated λ_{k} :
$\mathbf{x}_{k, 1}=\left(1^{\text {st }}\right.$ basis vector for $\left.E_{\lambda_{k}}\right), \mathbf{x}_{k, 2}=\left(2^{\text {nd }}\right.$ basis vector for $\left.E_{\lambda_{k}}\right), \ldots$
IMPORTANT: Repeated eigenvalues do not receive different indices!!
e.g. If A has eigenvalues $4,2,2,2,-1,-1$, then: $\lambda_{1}=-1, \lambda_{2}=2, \lambda_{3}=4$

Invertibility \& Eigenvalues

It turns out whether a matrix is invertible or not reveals whether zero is an eigenvalue or not:

Theorem

(Eigenvalues of Invertible \& Non-Invertible Matrices)
Let square matrix $A \in \mathbb{R}^{n \times n}$. Then:
> A is invertible \Longleftrightarrow All eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}$ are non-zero A is not invertible \Longleftrightarrow At least one eigenvalue $\lambda_{k}=0$

PROOF: Omitted.

e.g. Consider the 2×2 matrix $A=\left[\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right]$.

Then A has zero as an eigenvalue since A is not invertible. (identical columns)

Equivalent Conditions for Singular Square Matrices

Theorem

(Equivalent Conditions for Singular Square Matrices)
Let $A \in \mathbb{R}^{n \times n}$ be a square matrix and $r<n$.
Then the following are equivalent:

- RREF(A) has r pivots
- $\operatorname{rank}(A)=r$
- The rows of A are linearly dependent. Ditto for the columns of A.
- $\operatorname{dim} \operatorname{RowSp}(A)=\operatorname{dim} \operatorname{CoISp}(A)=r$
- $\operatorname{nullity}(A)=n-r$
- Linear system $A \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{0}}$ has infinitely solutions $\overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{x}}_{h}$
- Linear system $A \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{b}}$ has infinitely many solutions only if $\overrightarrow{\mathbf{b}} \in \operatorname{ColSp}(A)$
- Linear system $A \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{b}}$ has no solution only if $\overrightarrow{\mathbf{b}} \notin \operatorname{ColSp}(A)$
- A is not invertible (singular)
- $\operatorname{det}(A)=0$
- A has at least one eigenvalue $\lambda_{k}=0$

PART III:

EIGENVALUES, EIGENVECTORS, EIGENSPACES CASE III: SOME COMPLEX EIGENVALUES CASE IV: ALL COMPLEX EIGENVALUES

Irreducible Quadratics

Definition

Let $a, b, c \in \mathbb{R}$. Then:
The discriminant of quadratic $a x^{2}+b x+c$ is defined to be $b^{2}-4 a c$.

Definition

Let $a, b, c \in \mathbb{R}$. Then:
Quadratic $a x^{2}+b x+c$ is an irreducible quadratic $\Longleftrightarrow b^{2}-4 a c<0$.
i.e., the linear factors of an irreducible quadratic are complex (not real):
(Recall that the imaginary number $i=\sqrt{-1}$.)

- $x^{2}+1$ is irreducible since $x^{2}+1=(x-i)(x+i) \quad\left[b^{2}-4 a c=-4<0\right]$
- $x^{2}-1$ is reducible since $x^{2}-1=(x-1)(x+1) \quad\left[b^{2}-4 a c=4>0\right]$
- $x^{2}+2 x+2$ is irreducible since $x^{2}+2 x+2=[x+(1-i)][x+(1+i)]$ $\left[b^{2}-4 a c=-4<0\right]$

Fundamental Theorem of Algebra (FTA)

Theorem

(Fundamental Theorem of Algebra)
Every $n^{\text {th }}$-degree polynomial with complex coefficients can be factored into n linear factors with complex coefficients, some of which may be repeated.

Corollary

Every $n^{\text {th }}$-degree polynomial with real coefficients can be factored into linears \& irreducible quadratics with real coefficients.

What the corollary to the FTA means for finding eigenvalues is that the characteristic polynomial can always be factored into:

- Linear factors $\left(\lambda-\lambda_{k}\right)$
- Irreducible quadratics $\left(\lambda^{2}+\alpha \lambda+\beta\right)$.
e.g. If a 4×4 matrix A has characteristic poly $p_{A}(\lambda)=\left(\lambda^{2}+1\right)(\lambda-3)(\lambda+4)$, then A has real eigenvalues $\lambda_{1}=-4, \lambda_{2}=3$ and two complex eigenvalues since $\lambda^{2}+1$ is an irreducible quadratic.

Fundamental Theorem of Algebra (FTA)

Theorem

(Fundamental Theorem of Algebra)
Every $n^{\text {th }}$-degree polynomial with complex coefficients can be factored into n linear factors with complex coefficients, some of which may be repeated.

Corollary

Every $n^{\text {th }}$-degree polynomial with real coefficients can be factored into linears \& irreducible quadratics with real coefficients.

REMARK: The FTA provides no procedure for factoring!

- $x^{4}+1=\left(x^{2}+\sqrt{2} x+1\right)\left(x^{2}-\sqrt{2} x+1\right)$
- $x^{5}-1=(x-1)\left(x^{2}+\frac{1+\sqrt{5}}{2} x+1\right)\left(x^{2}+\frac{1-\sqrt{5}}{2} x+1\right)$
- $x^{5}+1=(x+1)\left(x^{2}-\frac{1+\sqrt{5}}{2} x+1\right)\left(x^{2}-\frac{1-\sqrt{5}}{2} x+1\right)$
- $x^{6}-1=(x-1)(x+1)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)$
- $x^{6}+1=\left(x^{2}+1\right)\left(x^{2}+\sqrt{3} x+1\right)\left(x^{2}-\sqrt{3} x+1\right)$

CASE III: Some Complex Eigenvalues (Procedure)

For CASE III, just apply the procedure for CASE I/II, but ignore irreducible quadratics in the characteristic polynomial:

Proposition

(Find Eigenvalues, Eigenvectors, Eigenspaces - Some Complex Eigenvalues)
GIVEN: Square Matrix $A \in \mathbb{R}^{n \times n}$ s.t. some eigenvalues are complex.
TASK: Find the real Eigenvalues λ_{k}, Eigenvectors \mathbf{x}_{k}, Eigenspaces $E_{\lambda_{k}}$ of A.
(1) Find Characteristic Polynomial $p_{A}(\lambda)=(-1)^{n} \operatorname{det}(A-\lambda I)$
(2) Solve Characteristic Eqn $p_{A}(\lambda)=0$, ignoring irreducible quadratics, to find real Eigenvalues.
(3) Find the Eigenspace for each real Eigenvalue $\lambda_{k}: E_{\lambda_{k}}=\operatorname{Null} \operatorname{Sp}\left(A-\lambda_{k} I\right)$
(4) Find an Eigenvector for each λ_{k}.

If distinct $\lambda_{k}: \quad \mathbf{x}_{k}=$ (basis vector for $E_{\lambda_{k}}$)
If repeated λ_{k} :
$\mathbf{x}_{k, 1}=\left(1^{\text {st }}\right.$ basis vector for $\left.E_{\lambda_{k}}\right), \mathbf{x}_{k, 2}=\left(2^{\text {nd }}\right.$ basis vector for $\left.E_{\lambda_{k}}\right), \ldots$

CASE IV: All Complex Eigenvalues (Procedure)

The Good News: CASE IV will never be considered in this course!
The Bad News: CASE IV will show up in higher math courses (Diff Eqns II)

Here are some 2×2 matrices that have all complex eigenvalues:

$$
\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right], \quad\left[\begin{array}{rr}
1 / 2 & -\sqrt{3} / 2 \\
\sqrt{3} / 2 & 1 / 2
\end{array}\right], \quad\left[\begin{array}{rr}
1 / \sqrt{2} & -1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right]
$$

The standard matrix for linear transformations representing certain rotations in an even-dimensional vector space like $\mathbb{R}^{2 k}$ will have all complex eigenvalues.

Of course, since all matrices considered will have real entries, a complex eigenvalue will have complex eigenvector(s) by necessity.

Fin.

