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PART I

PART I:

EIGENVALUES, EIGENVECTORS, EIGENSPACES
CASE I: DISTINCT REAL EIGENVALUES
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When a Matrix × Vector effectively Scales the Vector
Consider the following linear transformation L : R2 → R2 such that

L(x) = Ax, where A =

[
−11 −7

14 10

]
Then, in particular, if x1 = (−1, 1)T , x2 = (−1, 2)T , x3 = (−1,−1)T :

L(x1) = Ax1 =

[
−11 −7

14 10

] [
−1

1

]
=

[
4
−4

]
= (−4)

[
−1

1

]
= −4x1

—- AND —-

L(x2) = Ax2 =

[
−11 −7

14 10

] [
−1

2

]
=

[
−3

6

]
= (3)

[
−1

2

]
= 3x2

—- BUT —-

L(x3) = Ax3 =

[
−11 −7

14 10

] [
−1
−1

]
=

[
18
−24

]
6= (α)

[
−1
−1

]
= αx3

i.e. The matrix-vector product sometimes reduces to a scalar-vector product!!!

But such behavior does not occur to just any vector one chooses!
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When a Matrix × Vector effectively Scales the Vector
Consider the following linear transformation L : R2 → R2 such that

L(x) = Ax, where A =

[
−11 −7

14 10

]
Then, in particular, if x1 = (−1, 1)T , x2 = (−1, 2)T , x3 = (−1,−1)T :

L(x1) = Ax1 = −4x1 L(x2) = Ax2 = 3x2 L(x3) = Ax3 6= αx3
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Eigenvalues & Eigenvectors of a Square Matrix (Def’n)
This ”Matrix-Vector product reducing to Scalar-Vector product” behavior
occurs with vectors called eigenvectors:

Definition
(Eigenvalues & Eigenvectors of a Square Matrix)

Let square matrix A ∈ Rn×n, non-zero vector x ∈ Rn, and scalar λ ∈ R.

Then λ is an eigenvalue of A & x is a corresponding eigenvector of A if

(EIG) Ax = λx (where x 6= ~0)

Moreover, the ordered pair (λ, x) is called an eigenpair of A.

”eigen” is pronounced EYE-gen.

”eigen” comes from German: ”der Eigenwert” means ”own value”
”der Eigenvektor” means ”own vector”

NOTE: Eigenvector x 6= ~0 since A~0 = λ~0 is true for all scalars λ ∈ R

NOTE: It’s possible to have complex eigenpairs (involving i :=
√
−1),

however only real eigenpairs will be considered in this course.
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More Regarding Eigenvectors

Corollary
Let square matrix A ∈ Rn×n. Then:

(i) A scalar multiple of an eigenvector is also an eigenvector:

(EIG1) (λ, x) is an eigenpair of A =⇒ (λ, αx) is an eigenpair of A (α 6= 0)

(ii) The sum of two eigenvectors with same eigenvalue is also an eigenvector:

(EIG2) (λ, x1), (λ, x2) are eigenpairs of A =⇒ (λ, x1 + x2) is an eigenpair of A

PROOF:

(i) Let (λ, x) be an eigenpair of A. Then Ax = λx. Let α 6= 0.
=⇒ A(αx) M2

= α(Ax) EIG
= α(λx) M2

= λ(αx)
=⇒ A(αx) = λ(αx)
=⇒ (λ, αx) is an eigenpair of A

QED
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More Regarding Eigenvectors

Corollary
Let square matrix A ∈ Rn×n. Then:

(i) A scalar multiple of an eigenvector is also an eigenvector:

(EIG1) (λ, x) is an eigenpair of A =⇒ (λ, αx) is an eigenpair of A (α 6= 0)

(ii) The sum of two eigenvectors with same eigenvalue is also an eigenvector:

(EIG2) (λ, x1), (λ, x2) are eigenpairs of A =⇒ (λ, x1 + x2) is an eigenpair of A

PROOF:

(ii) Let (λ, x1), (λ, x2) be eigenpairs of A. Then Ax1 = λx1 & Ax2 = λx2

=⇒ A(x1 + x2)
M3
= Ax1 + Ax2

EIG
= λx1 + λx2

A7
= λ(x1 + x2)

=⇒ A(x1 + x2) = λ(x1 + x2)
=⇒ (λ, x1 + x2) is an eigenpair of A

QED
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Eigenspaces of a Square Matrix (Definition)

The previous corollary suggests that the set of all eigenvectors form a
subspace provided the zero vector is also included in the set:

Definition
(Eigenspaces of a Square Matrix)

Let square matrix A ∈ Rn×n and λ ∈ R be an eigenvalue of A.

Then the λ-eigenspace of A is the following subspace of Rn:

Eλ := {x ∈ Rn : (λ, x) is an eigenpair of A} ∪ {~0}

i.e. The λ-eigenspace is the set of all eigenvectors of A with eigenvalue λ
together with the zero vector (but of course ~0 is not an eigenvector.)
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Finding Eigenvalues, Eigenvectors, Eigenspaces
(Motivation)

So, how to find the eigenvalues, eigenvectors, eigenspaces of a matrix??

Let (λ, x) be an eigenpair of square matrix A.

Then Ax = λx ⇐⇒ Ax− λx = ~0 ⇐⇒ Ax− λIx = ~0 M4⇐⇒ (A− λI)x = ~0
where I is the n× n identity matrix.

Now, (A− λI)x = ~0 is a n× n homogeneous linear system,
which recall means that it automatically has the trivial solution x = ~0.

However, since x = ~0 is not an eigenvector of A,
the linear system (A− λI)x = ~0 must have non-trivial solns.

In order for (A− λI)x = ~0 to have non-trivial solutions,
the n× n matrix (A− λI) must not be invertible ⇐⇒ det(A− λI) = 0

∴ (λ, x) is an eigenpair of square matrix A ⇐⇒ det(A− λI) = 0
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Characteristic Polynomial of a Square Matrix

(λ, x) is an eigenpair of square matrix A ⇐⇒ det(A− λI) = 0

Now, the unknown in the equation det(A− λI) = 0 is λ.

Recall that computing a determinant involves only additions & multiplications.

So, the expression det(A− λI) is a polynomial in λ (and has a special name):

Definition
(Characteristic Polynomial of a Square Matrix)

Let square matrix A ∈ Rn×n and λ ∈ R be an eigenvalue of A.
Then the characteristic polynomial of A is defined to be:

pA(λ) := det(λI − A) = (−1)ndet(A− λI)

Moreover, pA(λ) is a polynomial in λ of degree n.
Moreover, the equation pA(λ) = 0 is called the characteristic equation for A.

REMARK: Use det(λI − A) for proofs & det(A− λI) for computations.

NOTE: For n ≥ 3, unless A is sparse, pA(λ) will be provided & factored a priori.
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CASE I: Distinct Real Eigenvalues

Theorem
(Eigenvalues, Eigenvectors, and the Characteristic Polynomial)

Let square matrix A ∈ Rn×n, non-zero vector x ∈ Rn, scalar λ ∈ R. Then:

(i) λ is an eigenvalue of A ⇐⇒ pA(λ) = 0 ⇐⇒ det(A− λI) = 0

(ii) x is an eigenvector of A ⇐⇒ (λI − A)x = ~0 ⇐⇒ (A− λI)x = ~0

It’s possible for some eigenvalues to be equal and have several linearly
independent corresponding eigenvectors.

For now, let’s consider the simpler case where all eigenvalues are distinct:

Theorem
(Distinct Real Eigenvalues)

Let square matrix A ∈ Rn×n s.t. all eigenvalues are real & distinct. Then:

A has n eigenpairs (λ1, x1), (λ2, x2), · · · , (λn, xn) s.t. λ1 < λ2 < · · · < λn.

i.e. Distinct eigenvalue λk has one distinct eigenvector xk s.t. Axk = λkxk.
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CASE I: Distinct Real Eigenvalues (Procedure)

Proposition
(Finding Eigenvalues, Eigenvectors, Eigenspaces – Distinct Real Eigenvalues)

GIVEN: Square Matrix A ∈ Rn×n s.t. all eigenvalues are real & distinct.

TASK: Find the Eigenvalues λk, Eigenvectors xk, Eigenspaces Eλk of A.

(1) Find Characteristic Polynomial pA(λ) = (−1)ndet(A− λI)

(2) Solve Characteristic Eqn det(A− λI) = 0 to find Eigenvalues λ1, . . . , λn

(3) Find the Eigenspace for each Eigenvalue λk: Eλk = NullSp(A− λkI)

(4) Find an Eigenvector for each Eigenvalue λk: xk = (basis vector for Eλk)

SANITY CHECKS: Axk = λkxk, dim(Eλk) = 1, xk’s are distinct and non-zero
pA(λ) = (λ− λ1)(λ− λ2) · · · (λ− λn)

REMARK: It’s convention for eigenvalues to be indexed in increasing order:

λ1 < λ2 < · · · < λn−1 < λn.

Josh Engwer (TTU) Sqaure Matrices: Eigenvalues, Eigenvectors 20 November 2015 12 / 43



Eigenvalues of Diagonal & Triangular Matrices
It turns out the eigenvalues of a triangular matrix are immediate:

Proposition
(Eigenvalues of a Triangular Matrix)

The eigenvalues of a triangular matrix are the main diagonal entries.

Recall that a diagonal matrix is a special triangular matrix:

Proposition
(Eigenvalues of a Diagonal Matrix)

The eigenvalues of a diagonal matrix are the main diagonal entries.

WEX 7-1-1: Find the eigenvalues λ1 < λ2 of the matrices

A =

[
1 4
0 3

]
, B =

[
−1 0

8 −6

]
, C =

[
7 0
0 5

]
Matrix A: λ1 = 1

λ2 = 3 Matrix B: λ1 = −6
λ2 = −1 Matrix C: λ1 = 5

λ2 = 7
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PART II

PART II:

EIGENVALUES, EIGENVECTORS, EIGENSPACES
CASE II: REPEATED REAL EIGENVALUES

DEFECTIVE MATRICES
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Case II: Repeated Real Eigenvalues (Motivation)

Consider the following diagonal matrices:

A =

 1 0 0
0 2 0
0 0 3

, B =

 1 0 0
0 1 0
0 0 3

, C =

 1 0 0
0 1 0
0 0 1


Then A,B,C have the following eigenvalues:

Matrix A :
λ1 = 1
λ2 = 2
λ3 = 3

, Matrix B :
λ1 = 1
λ2 = 1
λ3 = 3

, Matrix C :
λ1 = 1
λ2 = 1
λ3 = 1

Moreover A,B,C have the following characteristic polynomials:

Matrix A : pA(λ) = det(λI − A) = (λ− 1)(λ− 2)(λ− 3)
Matrix B : pB(λ) = det(λI − B) = (λ− 1)2(λ− 3)
Matrix C : pC(λ) = det(λI − C) = (λ− 1)3

Notice repeated eigenvalues in B,C lead to repeated factors in pB(λ), pC(λ).
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Case II: Repeated Real Eigenvalues (Motivation)
Consider the following diagonal matrices:

A =

 1 0 0
0 2 0
0 0 3

, B =

 1 0 0
0 1 0
0 0 3

, C =

 1 0 0
0 1 0
0 0 1


Then A,B,C have the following eigenvalues:

Matrix A :
λ1 = 1
λ2 = 2
λ3 = 3

, Matrix B :
λ1 = 1
λ2 = 1
λ3 = 3

, Matrix C :
λ1 = 1
λ2 = 1
λ3 = 1

Moreover, A has the following eigenspaces:

Mtx A : Eλ1 = span


 1

0
0

 ,Eλ2 = span


 0

1
0

 ,Eλ3 = span


 0

0
1


Finally, A has the following eigenvectors:

Matrix A : x1 =

 1
0
0

 , x2 =

 0
1
0

 , x3 =

 0
0
1
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Case II: Repeated Real Eigenvalues (Motivation)
Consider the following diagonal matrices:

A =

 1 0 0
0 2 0
0 0 3

, B =

 1 0 0
0 1 0
0 0 3

, C =

 1 0 0
0 1 0
0 0 1


Then A,B,C have the following eigenvalues:

Matrix A :
λ1 = 1
λ2 = 2
λ3 = 3

, Matrix B :
λ1 = 1
λ2 = 1
λ3 = 3

, Matrix C :
λ1 = 1
λ2 = 1
λ3 = 1

Moreover, B has the following eigenspaces:

Matrix B : Eλ1 = span


 1

0
0

 ,
 0

1
0

 ,Eλ3 = span


 0

0
1


Finally, B has the following eigenvectors:

Matrix B : x1,1 =

 1
0
0

 , x1,2 =

 0
1
0

 , x3 =

 0
0
1
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Case II: Repeated Real Eigenvalues (Motivation)
Consider the following diagonal matrices:

A =

 1 0 0
0 2 0
0 0 3

, B =

 1 0 0
0 1 0
0 0 3

, C =

 1 0 0
0 1 0
0 0 1


Then A,B,C have the following eigenvalues:

Matrix A :
λ1 = 1
λ2 = 2
λ3 = 3

, Matrix B :
λ1 = 1
λ2 = 1
λ3 = 3

, Matrix C :
λ1 = 1
λ2 = 1
λ3 = 1

Moreover, C has the following eigenspaces:

Matrix C : Eλ1 = span


 1

0
0

 ,
 0

1
0

 ,
 0

0
1


Finally, C has the following eigenvectors:

Matrix C : x1,1 =

 1
0
0

 , x1,2 =

 0
1
0

 , x1,3 =

 0
0
1
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Multiplicities of an Eigenvalue (Definition)

When presented with repeated eigenvalue(s), multiplicities are useful:

Definition
(Multiplicities of an Eigenvalue)

Let matrix A ∈ Rn×n have (repeated) real eigenvalues λ1 < λ2 < · · · < λp

Moreover, let A have the following factored characteristic polynomial

pA(λ) = (λ− λ1)
m1(λ− λ2)

m2 · · · (λ− λp)
mp (where m1, . . . ,mp ∈ Z+)

The algebraic multiplicity (AM) of eigenvalue λk is mk.

The geometric multiplicity (GM) of eigenvalue λk is dim(Eλk).

i.e. AM[λk] := mk = # occurrences of λk = power of factor (λ− λk) in pA(λ).

i.e. GM[λk] := dim(Eλk) = # basis vectors of eigenspace Eλk .

NOTATION: Z+ ≡ {positive integers} = {1, 2, 3, 4, 5, · · · }
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Multiplicities of an Eigenvalue (Examples)

Consider the following diagonal matrices:

A =

 1 0 0
0 2 0
0 0 3

, B =

 1 0 0
0 1 0
0 0 3

, C =

 1 0 0
0 1 0
0 0 1


Then A,B,C have the following eigenvalues:

Matrix A :
λ1 = 1
λ2 = 2
λ3 = 3

, Matrix B :
λ1 = 1
λ2 = 3 , Matrix C : λ1 = 1

Moreover, A has the following characteristic polynomial:

Matrix A : pA(λ) = det(λI − A) = (λ− 1)(λ− 2)(λ− 3)

Then the eigenvalues of A have the following algebraic multiplicities:

AM[λ1] = 1, AM[λ2] = 1, AM[λ3] = 1
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Multiplicities of an Eigenvalue (Examples)

Consider the following diagonal matrices:

A =

 1 0 0
0 2 0
0 0 3

, B =

 1 0 0
0 1 0
0 0 3

, C =

 1 0 0
0 1 0
0 0 1


Then A,B,C have the following eigenvalues:

Matrix A :
λ1 = 1
λ2 = 2
λ3 = 3

, Matrix B :
λ1 = 1
λ2 = 3 , Matrix C : λ1 = 1

Moreover, B has the following characteristic polynomial:

Matrix B : pB(λ) = det(λI − B) = (λ− 1)2(λ− 3)

Then the eigenvalues of B have the following algebraic multiplicities:

AM[λ1] = 2, AM[λ2] = 1
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Multiplicities of an Eigenvalue (Examples)

Consider the following diagonal matrices:

A =

 1 0 0
0 2 0
0 0 3

, B =

 1 0 0
0 1 0
0 0 3

, C =

 1 0 0
0 1 0
0 0 1


Then A,B,C have the following eigenvalues:

Matrix A :
λ1 = 1
λ2 = 2
λ3 = 3

, Matrix B :
λ1 = 1
λ2 = 3 , Matrix C : λ1 = 1

Moreover, C has the following characteristic polynomial:

Matrix C : pC(λ) = det(λI − C) = (λ− 1)3

Then the eigenvalue of C has the following algebraic multiplicity:

AM[λ1] = 3
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Multiplicities of an Eigenvalue (Examples)
Consider the following diagonal matrices:

A =

 1 0 0
0 2 0
0 0 3

, B =

 1 0 0
0 1 0
0 0 3

, C =

 1 0 0
0 1 0
0 0 1


Then A,B,C have the following eigenvalues:

Matrix A :
λ1 = 1
λ2 = 2
λ3 = 3

, Matrix B :
λ1 = 1
λ2 = 3 , Matrix C : λ1 = 1

Moreover, A has the following eigenspaces:

Mtx A : Eλ1 = span


 1

0
0

 ,Eλ2 = span


 0

1
0

 ,Eλ3 = span


 0

0
1


Then the eigenvalues of A have the following geometric multiplicities:

GM[λ1] = 1, GM[λ2] = 1, GM[λ3] = 1
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Multiplicities of an Eigenvalue (Examples)
Consider the following diagonal matrices:

A =

 1 0 0
0 2 0
0 0 3

, B =

 1 0 0
0 1 0
0 0 3

, C =

 1 0 0
0 1 0
0 0 1


Then A,B,C have the following eigenvalues:

Matrix A :
λ1 = 1
λ2 = 2
λ3 = 3

, Matrix B :
λ1 = 1
λ2 = 3 , Matrix C : λ1 = 1

Moreover, B has the following eigenspaces:

Matrix B : Eλ1 = span


 1

0
0

 ,
 0

1
0

 ,Eλ2 = span


 0

0
1


Then the eigenvalues of B have the following geometric multiplicities:

GM[λ1] = 2, GM[λ2] = 1
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Multiplicities of an Eigenvalue (Examples)
Consider the following diagonal matrices:

A =

 1 0 0
0 2 0
0 0 3

, B =

 1 0 0
0 1 0
0 0 3

, C =

 1 0 0
0 1 0
0 0 1


Then A,B,C have the following eigenvalues:

Matrix A :
λ1 = 1
λ2 = 2
λ3 = 3

, Matrix B :
λ1 = 1
λ2 = 3 , Matrix C : λ1 = 1

Moreover, C has the following eigenspaces:

Matrix C : Eλ1 = span


 1

0
0

 ,
 0

1
0

 ,
 0

0
1


Then the eigenvalue of C has the following geometric multiplicity:

GM[λ1] = 3
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Multiplicities of an Eigenvalue (Examples)

Consider the following diagonal matrices:

A =

 1 0 0
0 2 0
0 0 3

, B =

 1 0 0
0 1 0
0 0 3

, C =

 1 0 0
0 1 0
0 0 1


Then A,B,C have the following eigenvalues:

Matrix A :
λ1 = 1
λ2 = 2
λ3 = 3

, Matrix B :
λ1 = 1
λ2 = 3 , Matrix C : λ1 = 1

To summarize the multiplicities for the eigenvalues of A:

Matrix A : AM[λ1] = 1, GM[λ1] = 1 =⇒ AM[λ1] = GM[λ1]
Matrix A : AM[λ2] = 1, GM[λ2] = 1 =⇒ AM[λ2] = GM[λ2]
Matrix A : AM[λ3] = 1, GM[λ3] = 1 =⇒ AM[λ3] = GM[λ3]

Is it always true that AM[λk] = GM[λk]???? Seems plausible...
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Multiplicities of an Eigenvalue (Examples)

Consider the following diagonal matrices:

A =

 1 0 0
0 2 0
0 0 3

, B =

 1 0 0
0 1 0
0 0 3

, C =

 1 0 0
0 1 0
0 0 1


Then A,B,C have the following eigenvalues:

Matrix A :
λ1 = 1
λ2 = 2
λ3 = 3

, Matrix B :
λ1 = 1
λ2 = 3 , Matrix C : λ1 = 1

To summarize the multiplicities for the eigenvalues of B:

Matrix B : AM[λ1] = 2, GM[λ1] = 2 =⇒ AM[λ1] = GM[λ1]
Matrix B : AM[λ2] = 1, GM[λ2] = 1 =⇒ AM[λ2] = GM[λ2]

Is it always true that AM[λk] = GM[λk]???? Seems plausible...
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Multiplicities of an Eigenvalue (Examples)

Consider the following diagonal matrices:

A =

 1 0 0
0 2 0
0 0 3

, B =

 1 0 0
0 1 0
0 0 3

, C =

 1 0 0
0 1 0
0 0 1


Then A,B,C have the following eigenvalues:

Matrix A :
λ1 = 1
λ2 = 2
λ3 = 3

, Matrix B :
λ1 = 1
λ2 = 3 , Matrix C : λ1 = 1

To summarize the multiplicities for the eigenvalues of C:

Matrix C : AM[λ1] = 3, GM[λ1] = 3 =⇒ AM[λ1] = GM[λ1]

Is it always true that AM[λk] = GM[λk]???? Seems plausible...
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Multiplicities of an Eigenvalue (Shocking Examples!)

Consider the following upper triangular matrices:

D =

 1 1 0
0 1 0
0 0 1

, E =

 1 0 0
0 1 1
0 0 1

, F =

 1 1 0
0 1 1
0 0 1


Then D,E,F have the exact same eigenvalue & AM: λ1 = 1
Moreover, D,E,F have the exact same characteristic polynomial:

pD(λ) = pE(λ) = pF(λ) = (λ− λ1)
3 = (λ− 1)3 =⇒ AM[λ1] = 3

Moreover, D has the following eigenspace:

Matrix D : Eλ1 = span


 1

0
0

 ,
 0

0
1


Then the eigenvalue of D has the following geometric multiplicity: GM[λ1] = 2
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Multiplicities of an Eigenvalue (Shocking Examples!)

Consider the following upper triangular matrices:

D =

 1 1 0
0 1 0
0 0 1

, E =

 1 0 0
0 1 1
0 0 1

, F =

 1 1 0
0 1 1
0 0 1


Then D,E,F have the exact same eigenvalue & AM: λ1 = 1
Moreover, D,E,F have the exact same characteristic polynomial:

pD(λ) = pE(λ) = pF(λ) = (λ− λ1)
3 = (λ− 1)3 =⇒ AM[λ1] = 3

Moreover, E has the following eigenspace:

Matrix E : Eλ1 = span


 1

0
0

 ,
 0

1
0


Then the eigenvalue of E has the following geometric multiplicity: GM[λ1] = 2
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Multiplicities of an Eigenvalue (Shocking Examples!)

Consider the following upper triangular matrices:

D =

 1 1 0
0 1 0
0 0 1

, E =

 1 0 0
0 1 1
0 0 1

, F =

 1 1 0
0 1 1
0 0 1


Then D,E,F have the exact same eigenvalue & AM: λ1 = 1
Moreover, D,E,F have the exact same characteristic polynomial:

pD(λ) = pE(λ) = pF(λ) = (λ− λ1)
3 = (λ− 1)3 =⇒ AM[λ1] = 3

Moreover, F has the following eigenspace:

Matrix F : Eλ1 = span


 1

0
0


Then the eigenvalue of F has the following geometric multiplicity: GM[λ1] = 1
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Multiplicities of an Eigenvalue (Shocking Examples!)

Consider the following upper triangular matrices:

D =

 1 1 0
0 1 0
0 0 1

, E =

 1 0 0
0 1 1
0 0 1

, F =

 1 1 0
0 1 1
0 0 1


Then D,E,F have the exact same eigenvalue & AM: λ1 = 1
Moreover, D,E,F have the exact same characteristic polynomial:

pD(λ) = pE(λ) = pF(λ) = (λ− λ1)
3 = (λ− 1)3 =⇒ AM[λ1] = 3

To summarize the multiplicities for the eigenvalues of D,E,F:

Matrix D : AM[λ1] = 3, GM[λ1] = 2 =⇒ AM[λ1] > GM[λ1]
Matrix E : AM[λ1] = 3, GM[λ1] = 2 =⇒ AM[λ1] > GM[λ1]
Matrix F : AM[λ1] = 3, GM[λ1] = 1 =⇒ AM[λ1] > GM[λ1]

Is it always true that AM[λk] = GM[λk]???? A resounding NO!!!!!

Josh Engwer (TTU) Sqaure Matrices: Eigenvalues, Eigenvectors 20 November 2015 32 / 43



Defective Matrices (Definition)

So what matrices have eigenvalue(s) with differing AM & GM???

Definition
(Defective Matrix)

Let square matrix A ∈ Rn×n have eigenvalues λ1, λ2, . . . , λp. Then:

A is a defective matrix if at least one eigenvalue λk satisfies AM[λk] > GM[λk]

i.e. There’s fewer linearly indep. eigenvectors for λk than # occurrences of λk.

The following matrices encountered earlier are defective:

D =

 1 1 0
0 1 0
0 0 1

, E =

 1 0 0
0 1 1
0 0 1

, F =

 1 1 0
0 1 1
0 0 1
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CASE II: Repeated Real Eigenvalues (Procedure)
The procedure for CASE II is the same as for CASE I:

Proposition
(Find Eigenvalues, Eigenvectors, Eigenspaces – Repeated Real Eigenvalues)

GIVEN: Square Matrix A ∈ Rn×n s.t. all eigenvalues are real, some repeated.

TASK: Find the Eigenvalues λk, Eigenvectors xk, Eigenspaces Eλk of A.

(1) Find Characteristic Polynomial pA(λ) = (−1)ndet(A− λI)

(2) Solve Characteristic Eqn pA(λ) = 0 to find Eigenvalues λ1, . . . , λp (p < n)

(3) Find the Eigenspace for each Eigenvalue λk: Eλk = NullSp(A− λkI)

(4) Find an Eigenvector for each λk.
If distinct λk: xk = (basis vector for Eλk)
If repeated λk:

xk,1 = (1st basis vector for Eλk), xk,2 = (2nd basis vector for Eλk), . . .

IMPORTANT: Repeated eigenvalues do not receive different indices!!

e.g. If A has eigenvalues 4, 2, 2, 2,−1,−1, then: λ1 = −1, λ2 = 2, λ3 = 4
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Invertibility & Eigenvalues

It turns out whether a matrix is invertible or not reveals whether zero is an
eigenvalue or not:

Theorem
(Eigenvalues of Invertible & Non-Invertible Matrices)

Let square matrix A ∈ Rn×n. Then:

A is invertible ⇐⇒ All eigenvalues λ1, λ2, . . . , λp are non-zero
A is not invertible ⇐⇒ At least one eigenvalue λk = 0

PROOF: Omitted.

e.g. Consider the 2× 2 matrix A =

[
1 1
2 2

]
.

Then A has zero as an eigenvalue since A is not invertible. (identical columns)
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Equivalent Conditions for Singular Square Matrices

Theorem
(Equivalent Conditions for Singular Square Matrices)

Let A ∈ Rn×n be a square matrix and r < n.
Then the following are equivalent:

RREF(A) has r pivots
rank(A) = r

The rows of A are linearly dependent. Ditto for the columns of A.
dim RowSp(A) = dim ColSp(A) = r

nullity(A) = n− r

Linear system A~x = ~0 has infinitely solutions ~x = ~xh

Linear system A~x = ~b has infinitely many solutions only if ~b ∈ ColSp(A)

Linear system A~x = ~b has no solution only if ~b 6∈ ColSp(A)
A is not invertible (singular)
det(A) = 0
A has at least one eigenvalue λk = 0
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PART III

PART III:

EIGENVALUES, EIGENVECTORS, EIGENSPACES
CASE III: SOME COMPLEX EIGENVALUES
CASE IV: ALL COMPLEX EIGENVALUES
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Irreducible Quadratics

Definition
Let a, b, c ∈ R. Then:

The discriminant of quadratic ax2 + bx + c is defined to be b2 − 4ac.

Definition
Let a, b, c ∈ R. Then:

Quadratic ax2 + bx + c is an irreducible quadratic ⇐⇒ b2 − 4ac < 0.

i.e., the linear factors of an irreducible quadratic are complex (not real):

(Recall that the imaginary number i =
√
−1.)

x2 + 1 is irreducible since x2 + 1 = (x− i)(x + i)
[
b2 − 4ac = −4 < 0

]
x2 − 1 is reducible since x2 − 1 = (x− 1)(x + 1)

[
b2 − 4ac = 4 > 0

]
x2 + 2x + 2 is irreducible since x2 + 2x + 2 = [x + (1− i)][x + (1 + i)][

b2 − 4ac = −4 < 0
]
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Fundamental Theorem of Algebra (FTA)

Theorem
(Fundamental Theorem of Algebra)

Every nth-degree polynomial with complex coefficients can be factored into
n linear factors with complex coefficients, some of which may be repeated.

Corollary
Every nth-degree polynomial with real coefficients can be factored into
linears & irreducible quadratics with real coefficients.

What the corollary to the FTA means for finding eigenvalues is that the
characteristic polynomial can always be factored into:

Linear factors (λ− λk)

Irreducible quadratics (λ2 + αλ+ β).

e.g. If a 4× 4 matrix A has characteristic poly pA(λ) = (λ2 + 1)(λ− 3)(λ+ 4),
then A has real eigenvalues λ1 = −4, λ2 = 3
and two complex eigenvalues since λ2 + 1 is an irreducible quadratic.
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Fundamental Theorem of Algebra (FTA)

Theorem
(Fundamental Theorem of Algebra)

Every nth-degree polynomial with complex coefficients can be factored into
n linear factors with complex coefficients, some of which may be repeated.

Corollary
Every nth-degree polynomial with real coefficients can be factored into
linears & irreducible quadratics with real coefficients.

REMARK: The FTA provides no procedure for factoring!

x4 + 1 =
(

x2 +
√

2x + 1
)(

x2 −
√

2x + 1
)

x5 − 1 = (x− 1)
(

x2 + 1+
√

5
2 x + 1

)(
x2 + 1−

√
5

2 x + 1
)

x5 + 1 = (x + 1)
(

x2 − 1+
√

5
2 x + 1

)(
x2 − 1−

√
5

2 x + 1
)

x6 − 1 = (x− 1) (x + 1)
(
x2 + x + 1

) (
x2 − x + 1

)
x6 + 1 =

(
x2 + 1

) (
x2 +

√
3x + 1

)(
x2 −

√
3x + 1

)
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CASE III: Some Complex Eigenvalues (Procedure)

For CASE III, just apply the procedure for CASE I/II, but
ignore irreducible quadratics in the characteristic polynomial:

Proposition
(Find Eigenvalues, Eigenvectors, Eigenspaces – Some Complex Eigenvalues)

GIVEN: Square Matrix A ∈ Rn×n s.t. some eigenvalues are complex.

TASK: Find the real Eigenvalues λk, Eigenvectors xk, Eigenspaces Eλk of A.

(1) Find Characteristic Polynomial pA(λ) = (−1)ndet(A− λI)

(2) Solve Characteristic Eqn pA(λ) = 0, ignoring irreducible quadratics, to
find real Eigenvalues.

(3) Find the Eigenspace for each real Eigenvalue λk: Eλk = NullSp(A− λkI)

(4) Find an Eigenvector for each λk.
If distinct λk: xk = (basis vector for Eλk)
If repeated λk:

xk,1 = (1st basis vector for Eλk), xk,2 = (2nd basis vector for Eλk), . . .
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CASE IV: All Complex Eigenvalues (Procedure)

The Good News: CASE IV will never be considered in this course!

The Bad News: CASE IV will show up in higher math courses (Diff Eqns II)

Here are some 2× 2 matrices that have all complex eigenvalues:[
0 −1
1 0

]
,

[
1/2 −

√
3/2√

3/2 1/2

]
,

[
1/
√

2 −1/
√

2
1/
√

2 1/
√

2

]

The standard matrix for linear transformations representing certain rotations in
an even-dimensional vector space like R2k will have all complex eigenvalues.

Of course, since all matrices considered will have real entries, a complex
eigenvalue will have complex eigenvector(s) by necessity.
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Fin

Fin.
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