### Sqaure Matrices: Diagonalization, Powers Linear Algebra

Josh Engwer

TTU

30 November 2015

Josh Engwer (TTU)

# Similar Matrices (Motivation)



Consider the above **commutative diagram** of linear transformation L with standard matrices A, A' with respect to bases  $\mathcal{B}, \mathcal{B}'$  of vector space V. Traversing the above arrows translate into the following relations:

> Left Blue Arrow: Bottom Green Arrow:  $[L(\mathbf{x})]_{\mathcal{B}'} = A'[\mathbf{x}]_{\mathcal{B}'}$

 $[\mathbf{x}]_{\mathcal{B}} = \Pr_{\mathcal{B} \leftarrow \mathcal{B}'}[\mathbf{x}]_{\mathcal{B}'}$ 

# Similar Matrices (Motivation)



Consider the above **commutative diagram** of linear transformation *L* with standard matrices *A*, *A'* with respect to bases  $\mathcal{B}, \mathcal{B}'$  of vector space *V*.

One can start at  $[\mathbf{x}]_{\mathcal{B}'}$  and end at  $[L(\mathbf{x})]_{\mathcal{B}'}$  in two ways:

- Travel along the **blue** arrows:  $[L(\mathbf{x})]_{\mathcal{B}'} = P^{-1}AP[\mathbf{x}]_{\mathcal{B}'}$
- Travel along the green arrow:  $[L(\mathbf{x})]_{\mathcal{B}'} = A'[\mathbf{x}]_{\mathcal{B}'}$

where to reduce clutter simpler labels are used for the two transition matrices:

$$P \equiv \underset{\mathcal{B} \leftarrow \mathcal{B}'}{P} \implies P^{-1} \equiv \underset{\mathcal{B}' \leftarrow \mathcal{B}}{P}$$

# Similar Matrices (Motivation)



Consider the above **commutative diagram** of linear transformation *L* with standard matrices *A*, *A'* with respect to bases  $\mathcal{B}, \mathcal{B}'$  of vector space *V*. One can start at  $[\mathbf{x}]_{\mathcal{B}'}$  and end at  $[L(\mathbf{x})]_{\mathcal{B}'}$  in two ways:

- Travel along the **blue** arrows:  $[L(\mathbf{x})]_{\mathcal{B}'} = P^{-1}AP[\mathbf{x}]_{\mathcal{B}'}$
- Travel along the green arrow:  $[L(\mathbf{x})]_{\mathcal{B}'} = A'[\mathbf{x}]_{\mathcal{B}'}$

The standard matrices A, A' are "similar" to each other in the sense that both apply the linear transformation L but using different coordinates/bases.

Equating the RHS's of the above formulas for  $[L(\mathbf{x})]_{\mathcal{B}'}$  results in  $A' = P^{-1}AP$ 

So when do two  $n \times n$  square matrices have the same eigenvalues??

| Definition                                                                                                             |                |
|------------------------------------------------------------------------------------------------------------------------|----------------|
| (Similar Matrices)                                                                                                     |                |
| Let square matrices $A, B \in \mathbb{R}^{n \times n}$ .                                                               |                |
| Then <i>A</i> is <b>similar</b> to <i>B</i> if $\exists M \in \mathbb{R}^{n \times n}$ s.t. <i>M</i> is invertible and | $A = M^{-1}BM$ |

 $\exists \equiv$  "there exists"

#### Theorem

(Similar Matrices have the Same Eigenvalues)

Let square matrices  $A, B \in \mathbb{R}^{n \times n}$ . Then:

If A and B are similar, then A and B have the same eigenvalues.

#### Theorem

(Similar Matrices have the Same Eigenvalues)

Let square matrices  $A, B \in \mathbb{R}^{n \times n}$ . Then:

If A and B are similar, then A and B have the same eigenvalues.

<u>**PROOF**</u>: Since matrices *A* & *B* are similar,  $B = M^{-1}AM$  for some  $M \in \mathbb{R}^{n \times n}$ 

# Diagonalizable Matrix (Definition)

#### Definition

(Diagonalizable Matrix - First Principles Definition)

Let square matrix  $A \in \mathbb{R}^{n \times n}$ . Then *A* is **diagonalizable**  $\iff$  *A* is similar to an  $n \times n$  diagonal matrix *D*. i.e. *A* is diagonalizable if  $\exists M \in \mathbb{R}^{n \times n}$  s.t.  $M^{-1}AM = D$  where *D* is diagonal.

#### Theorem

(Equivalent Condition for Diagonalizability)

Let square matrix  $A \in \mathbb{R}^{n \times n}$ . Then *A* is diagonalizable  $\iff$  *A* has *n* linearly independent eigenvectors.

#### Theorem

(Sufficient Condition for Diagonalizability)

Let square matrix  $A \in \mathbb{R}^{n \times n}$ . Then:

If A has n distinct eigenvalues, then A is diagonalizable.

# Diagonalization of a Square Matrix (Procedure)

#### Proposition

- (Diagonalizing a Square Matrix)
- <u>GIVEN</u>: Matrix  $A \in \mathbb{R}^{n \times n}$  with all <u>real</u> eigenvalues, some possibly repeated.
- TASK: Diagonalize Square Matrix A, if possible.
- (1) Find the Eigenvalues of  $A: \lambda_1, \ldots, \lambda_n$
- (2) Find the Eigenspace  $E_{\lambda_k}$  for each unique Eigenvalue  $\lambda_k$ . If  $AM[\lambda_k] > GM[\lambda_k]$ , then *A* is <u>not</u> diagonalizable! STOP!!
- (3) Find Eigenvector(s) for each unique Eigenvalue  $\lambda_k$ .
- (4) Let matrix  $X \in \mathbb{R}^{n \times n}$  s.t. its columns consist of the eigenvectors.
- (5) Compute  $X^{-1}$ :  $[X \mid I] \xrightarrow{Gauss-Jordan} [I \mid X^{-1}]$
- (6) Let diagonal matrix Λ ∈ ℝ<sup>n×n</sup> s.t. the eigenvalues are on its main diagonal. The order of eigenvectors in X determine the order of eigenvalues in Λ.
- (7) Form the diagonalization of A:  $A = X\Lambda X^{-1}$

#### <u>NOTATION:</u> $\Lambda$ is the capital Greek letter 'lambda'.

### Diagonalization of a Square Matrix (Orderings)

Consistency is key when ordering eigenvalues in  $\Lambda$  & eigenvectors in X:

Suppose 3 × 3 matrix *A* has eigenvalues  $\lambda_1, \lambda_2, \lambda_3$  and eigenvectors  $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$ . Then, *A* can be diagonalized as  $A = X\Lambda X^{-1}$ , where:



## Diagonalization of a Square Matrix (Orderings)

Consistency is key when ordering eigenvalues in  $\Lambda$  & eigenvectors in X:

Suppose 3 × 3 matrix *A* has eigenvalues  $\lambda_1, \lambda_2$  and eigenvectors  $\mathbf{x}_{1,1}, \mathbf{x}_{1,2}, \mathbf{x}_2$ . Then, *A* can be diagonalized as  $A = X\Lambda X^{-1}$ , where:



### Powers of Diagonal Matrices (Review)

Recall that powers of diagonal matrices are painless to find:

#### Proposition

(Powers of Diagonal Matrices)

Let *D* be a  $n \times n$  diagonal matrix and *k* be a nonnegative integer. Then:

$$D^{k} = [d_{ij}^{k} \delta_{ij}]_{n \times n} = \begin{bmatrix} d_{11}^{k} & 0 & \cdots & 0 \\ 0 & d_{22}^{k} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_{nn}^{k} \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \implies A^{3} = \begin{bmatrix} 1^{3} & 0 \\ 0 & 2^{3} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 8 \end{bmatrix}$$
$$B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3 \end{bmatrix} \implies B^{4} = \begin{bmatrix} 1^{4} & 0 & 0 \\ 0 & 0^{4} & 0 \\ 0 & 0 & 3^{4} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 81 \end{bmatrix}$$

# The Value of Diagonalization (Powers Revisited)

#### Theorem

(Powers of a Square Matrix in Diagonalized Form)

Let square matrix  $A \in \mathbb{R}^{n \times n}$  such that A is **diagonalizable**:  $A = X\Lambda X^{-1}$ Moreover, let  $k \in \mathbb{Z}_+$  be a non-negative integer. Then:  $A^k = X\Lambda^k X^{-1}$ 

<u>**PROOF:**</u> (*I* is the  $n \times n$  identity matrix.)

$$\begin{array}{rclrcrcrcrcl} A^{0} & = & I & = & XX^{-1} = XIX^{-1} = X\Lambda^{0}X^{-1} \\ A^{1} & = & A & = & X\Lambda X^{-1} = X\Lambda^{1}X^{-1} \\ A^{2} & = & AA & = & (X\Lambda X^{-1})(X\Lambda X^{-1}) = X\Lambda(X^{-1}X)\Lambda X^{-1} \\ & & = & X\Lambda I\Lambda X^{-1} = X\Lambda \Lambda X^{-1} = X\Lambda^{2}X^{-1} \\ A^{3} & = & A^{2}A & = & (X\Lambda^{2}X^{-1})(X\Lambda X^{-1}) = X\Lambda^{2}(X^{-1}X)\Lambda X^{-1} \\ & & = & X\Lambda^{2}I\Lambda X^{-1} = X\Lambda^{2}\Lambda X^{-1} = X\Lambda^{3}X^{-1} \\ \vdots & \vdots & & \vdots \\ A^{k-1} & = & A^{k-2}A & = & \cdots & = & X\Lambda^{k-1}X^{-1} \\ A^{k} & = & A^{k-1}A & = & (X\Lambda^{k-1}X^{-1})(X\Lambda X^{-1}) = X\Lambda^{k-1}(X^{-1}X)\Lambda X^{-1} \\ & & = & X\Lambda^{k-1}I\Lambda X^{-1} = X\Lambda^{k-1}\Lambda X^{-1} = X\Lambda^{k}X^{-1} \end{array}$$

QED

### The Value of Diagonalization (Powers Revisited)

The power of an  $n \times n$  square matrix in diagonalized form requires far less work, especially if the matrix is **large**  $(n \ge 3)$  and **dense**:

Power by Brute Force: $A^{10} = AAAAAAAAAA$ Power of Diagonalized Form: $A^{10} = X\Lambda^{10}X^{-1}$ 

|      | POWER BY BRUTE FORCE | POWER OF DIAGONALIZED FORM |
|------|----------------------|----------------------------|
| k    | DENSE MATRIX         | DENSE MATRIX               |
|      | MULTIPLICATIONS      | MULTIPLICATIONS            |
| 2    | 1                    | 1                          |
| 3    | 2                    | 1                          |
| 4    | 3                    | 1                          |
| 5    | 4                    | 1                          |
| :    |                      |                            |
| 10   | 9                    | 1                          |
| :    | :                    | :                          |
|      |                      | 1                          |
| 1000 | 999                  | 1                          |

Powers of diagonalized forms require far less work for computers.

Josh Engwer (TTU)

# Eigenvalues & Eigenvectors of the Inverse of a Matrix

If the eigenpairs  $(\lambda, \mathbf{x})$  of invertible matrix *A* are known, then the eigenpairs of its inverse  $A^{-1}$  can be quickly found:

#### Theorem

(Eigenvalues & Eigenvectors of the Inverse of a Matrix)

Let square matrix  $A \in \mathbb{R}^{n \times n}$  be invertible. Then:

$$(\lambda, {f x})$$
 is an eigenpair of  $A \iff \left(rac{1}{\lambda}, {f x}
ight)$  is an eigenpair of  $A^{-1}$ 

<u>PROOF:</u> Let matrix *A* be invertible. Then,  $\lambda \neq 0$ .  $(\lambda, \mathbf{x})$  is an eigenpair of  $A \iff A\mathbf{x} = \lambda \mathbf{x} \iff \mathbf{x} = \lambda A^{-1}\mathbf{x}$  $\iff \frac{1}{\lambda}\mathbf{x} = A^{-1}\mathbf{x} \iff A^{-1}\mathbf{x} = \frac{1}{\lambda}\mathbf{x} \iff \left(\frac{1}{\lambda}, \mathbf{x}\right)$  is an eigenpair of  $A^{-1}$ 

QED

# Fin.