Sqaure Matrices: Diagonalization, Powers
 Linear Algebra

Josh Engwer

TTU
30 November 2015

Similar Matrices (Motivation)

Consider the above commutative diagram of linear transformation L with standard matrices A, A^{\prime} with respect to bases $\mathcal{B}, \mathcal{B}^{\prime}$ of vector space V.
Traversing the above arrows translate into the following relations:

$$
\begin{array}{cc}
\text { Left Blue Arrow: } & {[\mathbf{x}]_{\mathcal{B}}={ }_{\mathcal{B} \leftarrow \mathcal{B}^{\prime}}{ }^{\prime}[\mathbf{x}]_{\mathcal{B}^{\prime}}} \\
\text { Top Blue Arrow: } & {[L(\mathbf{x})]_{\mathcal{B}}=A[\mathbf{x}]_{\mathcal{B}}} \\
\text { Right Blue Arrow: } & {[L(\mathbf{x})]_{\mathcal{B}^{\prime}}=P{ }_{\mathcal{B}^{\prime} \leftarrow \mathcal{B}}[L(\mathbf{x})]_{\mathcal{B}}} \\
\text { Bottom Green Arrow: } & {[L(\mathbf{x})]_{\mathcal{B}^{\prime}}=A^{\prime}[\mathbf{x}]_{\mathcal{B}^{\prime}}}
\end{array}
$$

Similar Matrices (Motivation)

Linear Transformation $L: V \rightarrow V$

Consider the above commutative diagram of linear transformation L with standard matrices A, A^{\prime} with respect to bases $\mathcal{B}, \mathcal{B}^{\prime}$ of vector space V.
One can start at $[\mathbf{x}]_{\mathcal{B}^{\prime}}$ and end at $[L(\mathbf{x})]_{\mathcal{B}^{\prime}}$ in two ways:

- Travel along the blue arrows: $\quad[L(\mathbf{x})]_{\mathcal{B}^{\prime}}=P^{-1} A P[\mathbf{x}]_{\mathcal{B}^{\prime}}$
- Travel along the green arrow: $[L(\mathbf{x})]_{\mathcal{B}^{\prime}}=A^{\prime}[\mathbf{x}]_{\mathcal{B}^{\prime}}$
where to reduce clutter simpler labels are used for the two transition matrices:

$$
P \equiv \underset{\mathcal{B} \leftarrow \mathcal{B}^{\prime}}{P} \Longrightarrow P^{-1} \equiv \underset{\mathcal{B}^{\prime} \leftarrow \mathcal{B}}{P}
$$

Similar Matrices (Motivation)

Consider the above commutative diagram of linear transformation L with standard matrices A, A^{\prime} with respect to bases $\mathcal{B}, \mathcal{B}^{\prime}$ of vector space V.
One can start at $[\mathbf{x}]_{\mathcal{B}^{\prime}}$ and end at $[L(\mathbf{x})]_{\mathcal{B}^{\prime}}$ in two ways:

- Travel along the blue arrows: $\quad[L(\mathbf{x})]_{\mathcal{B}^{\prime}}=P^{-1} A P[\mathbf{x}]_{\mathcal{B}^{\prime}}$
- Travel along the green arrow: $[L(\mathbf{x})]_{\mathcal{B}^{\prime}}=A^{\prime}[\mathbf{x}]_{\mathcal{B}^{\prime}}$

The standard matrices A, A^{\prime} are "similar" to each other in the sense that both apply the linear transformation L but using different coordinates/bases.
Equating the RHS's of the above formulas for $[L(\mathbf{x})]_{\mathcal{B}^{\prime}}$ results in $A^{\prime}=P^{-1} A P$

Similar Matrices (Definition)

So when do two $n \times n$ square matrices have the same eigenvalues??

Definition

(Similar Matrices)
Let square matrices $A, B \in \mathbb{R}^{n \times n}$.
Then A is similar to B if $\exists M \in \mathbb{R}^{n \times n}$ s.t. M is invertible and $A=M^{-1} B M$
$\exists \equiv$ "there exists"

Theorem

(Similar Matrices have the Same Eigenvalues)
Let square matrices $A, B \in \mathbb{R}^{n \times n}$. Then:
If A and B are similar, then A and B have the same eigenvalues.

Similar Matrices (Definition)

Theorem

(Similar Matrices have the Same Eigenvalues)
Let square matrices $A, B \in \mathbb{R}^{n \times n}$. Then:
If A and B are similar, then A and B have the same eigenvalues.
PROOF: Since matrices $A \& B$ are similar, $B=M^{-1} A M$ for some $M \in \mathbb{R}^{n \times n}$

$$
\begin{aligned}
p_{B}(\lambda) & =|\lambda I-B|=\left|\lambda I-M^{-1} A M\right| \\
& =\left|\left(M^{-1} M\right) \lambda I-M^{-1} A M\right| \\
& =\left|M^{-1} \lambda I M-M^{-1} A M\right| \\
& =\left|M^{-1}(\lambda I M-A M)\right| \\
& =\left|M^{-1}(\lambda I-A) M\right| \\
& =\left|M^{-1}\right||\lambda I-A||M| \\
& =\left|M^{-1}\right||M||\lambda I-A| \\
& =\left|M^{-1} M\right||\lambda I-A| \\
& =|I||\lambda I-A| \\
& =|\lambda I-A|=p_{A}(\lambda)
\end{aligned}
$$

[I is $n \times n$ Identity Matrix]
[Clever Insertion of Identity: $I=M^{-1} M$]

$$
[M I=I M]
$$

[Left-Factor M^{-1}]
[Right-Factor M]

$$
[|A B C|=|A B||C|=|A||B||C|]
$$

[Commutativity of Scalar Mult.: $a b=b a$]
[Determinant of Product: $|A||B|=|A B|]$

$$
\begin{gathered}
{\left[I=A^{-1} A=A A^{-1}\right]} \\
\quad[|I|=1]
\end{gathered}
$$

$\therefore p_{B}(\lambda)=p_{A}(\lambda) \Longrightarrow A$ and B have the same eigenvalues

Diagonalizable Matrix (Definition)

Definition

(Diagonalizable Matrix - First Principles Defintion)
Let square matrix $A \in \mathbb{R}^{n \times n}$.
Then A is diagonalizable $\Longleftrightarrow A$ is similar to an $n \times n$ diagonal matrix D. i.e. A is diagonalizable if $\exists M \in \mathbb{R}^{n \times n}$ s.t. $M^{-1} A M=D$ where D is diagonal.

Theorem

(Equivalent Condition for Diagonalizability)
Let square matrix $A \in \mathbb{R}^{n \times n}$.
Then A is diagonalizable $\Longleftrightarrow A$ has n linearly independent eigenvectors.

Theorem

(Sufficient Condition for Diagonalizability)
Let square matrix $A \in \mathbb{R}^{n \times n}$. Then:
If A has n distinct eigenvalues, then A is diagonalizable.

Diagonalization of a Square Matrix (Procedure)

Proposition

(Diagonalizing a Square Matrix)
GIVEN: Matrix $A \in \mathbb{R}^{n \times n}$ with all real eigenvalues, some possibly repeated. TASK: Diagonalize Square Matrix A, if possible.
(1) Find the Eigenvalues of A : $\lambda_{1}, \ldots, \lambda_{n}$
(2) Find the Eigenspace $E_{\lambda_{k}}$ for each unique Eigenvalue λ_{k}. If $A M\left[\lambda_{k}\right]>G M\left[\lambda_{k}\right]$, then A is not diagonalizable! STOP!!
(3) Find Eigenvector(s) for each unique Eigenvalue λ_{k}.
(4) Let matrix $X \in \mathbb{R}^{n \times n}$ s.t. its columns consist of the eigenvectors.
(5) Compute X^{-1} :

$$
[X \mid I] \xrightarrow{\text { Gauss }- \text { Jordan }}\left[I \mid X^{-1}\right]
$$

(6) Let diagonal matrix $\Lambda \in \mathbb{R}^{n \times n}$ s.t. the eigenvalues are on its main diagonal. The order of eigenvectors in X determine the order of eigenvalues in Λ.
(7) Form the diagonalization of A :

$$
A=X \Lambda X^{-1}
$$

NOTATION: Λ is the capital Greek letter 'lambda'.

Diagonalization of a Square Matrix (Orderings)

Consistency is key when ordering eigenvalues in Λ \& eigenvectors in X : Suppose 3×3 matrix A has eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$ and eigenvectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}$. Then, A can be diagonalized as $A=X \Lambda X^{-1}$, where:

$$
\begin{aligned}
& X=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\mathbf{x}_{1} & \mathbf{x}_{2} & \mathbf{x}_{3} \\
\mid & \mid & \mid
\end{array}\right] \text { and } \Lambda=\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right] \\
& X=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\mathbf{x}_{2} & \mathbf{x}_{1} & \mathbf{x}_{3} \\
\mid & \mid & \mid
\end{array}\right] \text { and } \Lambda=\left[\begin{array}{ccc}
\lambda_{2} & 0 & 0 \\
0 & \lambda_{1} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right] \\
& X=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\mathbf{x}_{3} & \mathbf{x}_{1} & \mathbf{x}_{2} \\
\mid & \mid & \mid
\end{array}\right] \text { and } \Lambda=\left[\begin{array}{ccc}
\lambda_{3} & 0 & 0 \\
0 & \lambda_{1} & 0 \\
0 & 0 & \lambda_{2}
\end{array}\right] \\
& X=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\mathbf{x}_{3} & \mathbf{x}_{2} & \mathbf{x}_{1} \\
\mid & \mid & \mid
\end{array}\right] \text { and } \Lambda=\left[\begin{array}{ccc}
\lambda_{3} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{1}
\end{array}\right]
\end{aligned}
$$

Diagonalization of a Square Matrix (Orderings)

Consistency is key when ordering eigenvalues in Λ \& eigenvectors in X :
Suppose 3×3 matrix A has eigenvalues λ_{1}, λ_{2} and eigenvectors $\mathbf{x}_{1,1}, \mathbf{x}_{1,2}, \mathbf{x}_{2}$. Then, A can be diagonalized as $A=X \Lambda X^{-1}$, where:

$$
\begin{aligned}
& X=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\mathbf{x}_{1,1} & \mathbf{x}_{1,2} & \mathbf{x}_{2} \\
\mid & \mid & \mid
\end{array}\right] \text { and } \Lambda=\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{1} & 0 \\
0 & 0 & \lambda_{2}
\end{array}\right] \\
& X=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\mathbf{x}_{1,2} & \mathbf{x}_{1,1} & \mathbf{x}_{2} \\
\mid & \mid & \mid
\end{array}\right] \text { and } \Lambda=\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{1} & 0 \\
0 & 0 & \lambda_{2}
\end{array}\right] \\
& X=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\mathbf{x}_{1,1} & \mathbf{x}_{2} & \mathbf{x}_{1,2} \\
\mid & \mid & \mid
\end{array}\right] \text { and } \Lambda=\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{1}
\end{array}\right] \\
& X=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\mathbf{x}_{2} & \mathbf{x}_{1,1} & \mathbf{x}_{1,2} \\
\mid & \mid & \mid
\end{array}\right] \text { and } \Lambda=\left[\begin{array}{ccc}
\lambda_{2} & 0 & 0 \\
0 & \lambda_{1} & 0 \\
0 & 0 & \lambda_{1}
\end{array}\right]
\end{aligned}
$$

Powers of Diagonal Matrices (Review)

Recall that powers of diagonal matrices are painless to find:

Proposition

(Powers of Diagonal Matrices)
Let D be a $n \times n$ diagonal matrix and k be a nonnegative integer. Then:

$$
D^{k}=\left[d_{i j}^{k} \delta_{i j}\right]_{n \times n}=\left[\begin{array}{cccc}
d_{11}^{k} & 0 & \cdots & 0 \\
0 & d_{22}^{k} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & d_{n n}^{k}
\end{array}\right]
$$

$A=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right] \Longrightarrow A^{3}=\left[\begin{array}{cc}1^{3} & 0 \\ 0 & 2^{3}\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 8\end{array}\right]$
$B=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3\end{array}\right] \Longrightarrow B^{4}=\left[\begin{array}{ccc}1^{4} & 0 & 0 \\ 0 & 0^{4} & 0 \\ 0 & 0 & 3^{4}\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 81\end{array}\right]$

The Value of Diagonalization (Powers Revisited)

Theorem

(Powers of a Square Matrix in Diagonalized Form)
Let square matrix $A \in \mathbb{R}^{n \times n}$ such that A is diagonalizable: $A=X \Lambda X^{-1}$ Moreover, let $k \in \overline{\mathbb{Z}}_{+}$be a non-negative integer. Then: $\quad A^{k}=X \Lambda^{k} X^{-1}$

PROOF: (I is the $n \times n$ identity matrix.)

$$
\begin{aligned}
& A^{0}=I=X X^{-1}=X I X^{-1}=X \Lambda^{0} X^{-1} \\
& A^{1}=A=X \Lambda X^{-1}=X \Lambda^{1} X^{-1} \\
& A^{2}=A A=\left(X \Lambda X^{-1}\right)\left(X \Lambda X^{-1}\right)=X \Lambda\left(X^{-1} X\right) \Lambda X^{-1} \\
& =X \Lambda I \Lambda X^{-1}=X \Lambda \Lambda X^{-1}=X \Lambda^{2} X^{-1} \\
& A^{3}=A^{2} A=\left(X \Lambda^{2} X^{-1}\right)\left(X \Lambda X^{-1}\right)=X \Lambda^{2}\left(X^{-1} X\right) \Lambda X^{-1} \\
& =X \Lambda^{2} I \Lambda X^{-1}=X \Lambda^{2} \Lambda X^{-1}=X \Lambda^{3} X^{-1} \\
& A^{k-1}=A^{k-2} A=\cdots=X \Lambda^{k-1} X^{-1} \\
& A^{k}=A^{k-1} A=\left(X \Lambda^{k-1} X^{-1}\right)\left(X \Lambda X^{-1}\right)=X \Lambda^{k-1}\left(X^{-1} X\right) \Lambda X^{-1} \\
& =X \Lambda^{k-1} I \Lambda X^{-1}=X \Lambda^{k-1} \Lambda X^{-1}=X \Lambda^{k} X^{-1}
\end{aligned}
$$

QED

The Value of Diagonalization (Powers Revisited)

The power of an $n \times n$ square matrix in diagonalized form requires far less work, especially if the matrix is large ($n \geq 3$) and dense:

Power by Brute Force:
Power of Diagonalized Form: $\quad A^{10}=X \Lambda^{10} X^{-1}$

	POWER BY BRUTE FORCE	POWER OF DIAGONALIZED FORM
k	DENSE MATRIX	DENSE MATRIX
	MULTIPLICATIONS	MULTIPLICATIONS
2	1	1
3	2	1
4	3	1
5	4	1
\vdots	\vdots	\vdots
10	9	1
\vdots	\vdots	\vdots
1000	999	1

Powers of diagonalized forms require far less work for computers.

Eigenvalues \& Eigenvectors of the Inverse of a Matrix

If the eigenpairs (λ, \mathbf{x}) of invertible matrix A are known, then the eigenpairs of its inverse A^{-1} can be quickly found:

Theorem

(Eigenvalues \& Eigenvectors of the Inverse of a Matrix)
Let square matrix $A \in \mathbb{R}^{n \times n}$ be invertible. Then:

$$
(\lambda, \mathbf{x}) \text { is an eigenpair of } A \Longleftrightarrow\left(\frac{1}{\lambda}, \mathbf{x}\right) \text { is an eigenpair of } A^{-1}
$$

PROOF: Let matrix A be invertible. Then, $\lambda \neq 0$.
(λ, \mathbf{x}) is an eigenpair of $A \Longleftrightarrow A \mathbf{x}=\lambda \mathbf{x} \Longleftrightarrow \mathbf{x}=\lambda A^{-1} \mathbf{x}$
$\Longleftrightarrow \frac{1}{\lambda} \mathbf{x}=A^{-1} \mathbf{x} \Longleftrightarrow A^{-1} \mathbf{x}=\frac{1}{\lambda} \mathbf{x} \Longleftrightarrow\left(\frac{1}{\lambda}, \mathbf{x}\right)$ is an eigenpair of A^{-1}
QED

Fin.

