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Symmetric Matrices (Definition)

The notion of a symmetric matrix is fundamental for later concepts & courses:
Definition
(Symmetric Matrix)

A square matrix A € R"™" is symmetric if A is equal to its transpose: AT = A

v

Corollary

(Diagonal Matrices are Symmetric)
A diagonal matrix D € R"*" js symmetric.

Symmetric Matrices: [1 2], [_4 0], [

2 3 0 -1

4 0 1 2 3
Not Symmetric: [ 1 — ] , 9 4 5
6
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Symmetric Matrices (Properties)

Symmetric matrices have some very nice properties:

(The Real Spectrum Theorem)

Let symmetric matrix S € R**". Then the following all hold:
@ S is diagonalizable

@ All eigenvalues of S are real

@ If some eigenvalue )\, repeats, its multiplicities match: AM[\,] = GM[\;]
i.e. If \, occurs j times, then )\, has j linearly independent eigenvectors:

X1y Xk25 «ovy Xij—1, Xk

PROOF: It's complicated...
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Orthogonal Matrices (Definition)

Question: When is the inverse of a square matrix is simply its transpose??
Answer:  When the square matrix is orthogonal:

Definition

(Orthogonal Matrix)
A square matrix Q € R"*" is orthogonal if Q is invertible and 0~! = QT

Corollary
(Determining if a Matrix is Orthogonal)
A square matrix Q € R"™" is orthogonal <— Q"Q =1

(An Orthogonal Matrix has Orthonormal Columns)
A square matrix Q is orthogonal < its columns form an orthonormal set.

PROOE: See the textbook if interested.
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Orthogonal Matrices (Properties)

The following theorem is the cornerstone to many stable numerical algorithms
involving orthogonal matrices:

(Orthogonal Preservation Theorem)
Consider the Euclidean inner product space (R", (-,-)) where v,w,x € R" and

Inner product  (v,w) = viw
Induced norm  ||x|| = (x,X)
Induced metric d(v,w) := ||v—w|

Then orthogonal matrix Q € R"*" preserves inner products, norms & metrics:

(i) (Qv, Ow) = (v, W), (i0) [lOx|| = [IxI, (iii) d(Qv, OW) = d(V, W) |
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Orthogonal Matrices (Properties)

(Orthogonal Preservation Theorem)
Consider the Euclidean inner product space (R", (-,-)) where v,w,x € R" and

Inner product ~ (v,w) = viw
Induced norm  ||x|| = (%, X)
Induced metric d(v,w) := |[lv—w||

Then orthogonal matrix Q € R"*" preserves inner products, norms & metrics:

(i) (Qv, QW) = (v, W), (i1) |lox]| = [[xl], (iii) d(Qv, QW) = d(v, W) |

PROOF:

(i) (Qv,0w) = (Qv)" (QW) vI(QTO)w =V (07! Q)w = VI Iw = VW := (v, w)
(id) [10x]> = (ox. 0%) € (x, X>—||X||2 = ||QX||—||XH

(i) d(Qv, 0w) := [|0v — W[ Z [lo(v — w)[| £ ||v — w]] QED
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Eigenvectors of a Symmetric Matrix

Eigenvectors of distinct eigenvalues of a symmetric matrix have a benefit:

(Eigenvectors of a Symmetric Matrix)
Let symmetric matrix S € R**" have eigenpairs (\1,x1), (A\2,xz). Then:

If eigenvalues \i, \, are distinct, then eigenvectors x,, x, are orthogonal.

ie. If)\l 7é Ao, then x; L x;.
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Eigenvectors of a Symmetric Matrix

(Eigenvectors of a Symmetric Matrix)
Let symmetric matrix S € R**" have eigenpairs (\1,x1), (A\2,X2). Then:

If eigenvalues )\, \, are distinct, then eigenvectors x,x, are orthogonal.
ie. If\ 7& Ay, thenx; L x;.

(A1, x1)
(A2, %x2)

Moreover: (Since S is symmetric, S = S7)

SX1 = >\1X1

PROOF: Let o

be eigenpairs of S s.t. A\ # \,. Then

EIG T4 SYM EIG
M (xIx0) = (\xp) % = (Sx1)Tx0 = xISTx, "= xI(Sx2) = xI (ox2) = Xa(xIx))

Hence:

M(xTx) = M(xIx) = M%) —MxIx) =0 = (A — ) (xIx2) =0
Since \| # Ay < A\ — X\ # 0, the equation (A} — \2)(x]x2) = 0 implies that
xIx, =0 = x; L x, = x,x; are orthogonal QED
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PART II:

ORTHOGONAL DIAGONALIZATION
OF A
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Orthogonally Diagonalizable Matrices

Definition

(Orthogonally Diagonalizable Matrix)

Let square matrix A € R"*".
Then A is orthogonally diagonalizable if 30 € R**" s.t. Q is orthogonal and

0TAQ = D where D is diagonal.

(Symmetric Matrices are Orthogonally Diagonalizable)

Square matrix A is orthgonally diagonalizable < A is symmetric.

PROOF: (=) : Let A be orthognally diagonalizable.
Then QTAQ = D for some orthogonal matrix Q and diagonal matrix D.
Now, QTAQ =D = QQTAQQT = ODQT — IAl = QDQT — A =0DQT

Now, AT = (QDQ")T £ QT"DT Q" = QDT Q" *2' 0DQ" =
. AT =A = Ais symmetric
(<) : It's subtle — see the textbook if interested. QED
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Orthogonal Diagonalization of a Symmetric Matrix

Proposition
(Orthogonally Diagonalizing a Symmetric Matrix)

GIVEN: Symmetric Matrix S € R"*" with some possibly repeated eigenvalues.
TASK: Orthogonally Diagonalize Symmetric Matrix S.

(1) Find the Eigenvalues of S: Ay, ..., A\

(2) Find the Eigenspace E), for each unique Eigenvalue \.

(3) Find Unit Eigenvector(s) qi for each unique Eigenvalue \.: q. = Hg—iu
If AM[\] > 2, then apply Gram-Schmidt on the eigenvectors for ).

(4) Let matrix Q € R"™" s.t. its columns consist of the unit eigenvectors.

(5) Let diagonal matrix A € R"*" s.t. the eigenvalues are on its main diagonal.
The order of eigenvectors in Q determine the order of eigenvalues in A.

(6) Form the diagonalization of S: S = QAQT

NOTATION: A is the capital Greek letter 'lambda’.
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Ortho. Diagonalization of Symmetric Matrix (Ordering)

Consistency is key when ordering eigenvalues in A & eigenvectors in Q:

Let 3 x 3 sym. matrix S have eigenvalues A, \;, \; & eigenvectors qy, g2, qs.
Then, S can be orthogonally diagonalized as S = QAQT, where:

o A 0 0
O0=|4q Q@ Q3 and A=| 0 X O
LT L 0 0 A3 |
_ —OR— 3
o A0 0
O0=| Q@ q @3 and A=| 0 X O
. 0 0 Az |
_ —OR— 3
o A3 000
O=|qG q @ and A=| 0 X O
. 0 0 X |
_ —OR— 3
o A3 000
0=| a4 @ q and A=| 0 X O
L L 0 0 A |
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Ortho. Diagonalization of Symmetric Matrix (Ordering)

Consistency is key when ordering eigenvalues in A & eigenvectors in Q:

Let 3 x 3 sym. matrix S have eigenvalues A, \, & eigenvectors q; 1,4 2, q>-
Then, S can be orthogonally diagonalized as S = QAQT, where:

| | A0 0

O=| Q1 Q2 @ and A=| 0 ) O
A I [0 0 X
i ——OR— -

| | A0 0

O=| Q2 Q1 @ and A=| 0 ) O
A N [0 0 X
i ——OR— -

o A0 0

O=| Q1 @ Q2 and A= 0 X\ O
A N [0 0 N |
i ——OR— -

| | XM 0 0

O=| Q@ q1 Q2 and A=| 0 ) O
L] [0 0 N |
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Fin.
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