Symmetric Matrices, Orthogonal Matrices

 Linear AlgebraJosh Engwer

TTU

02 December 2015

PART I:

SYMMETRIC MATRICES ORTHOGONAL MATRICES

Symmetric Matrices (Definition)

The notion of a symmetric matrix is fundamental for later concepts \& courses:

Definition

(Symmetric Matrix)
A square matrix $A \in \mathbb{R}^{n \times n}$ is symmetric if A is equal to its transpose: $A^{T}=A$

Corollary

(Diagonal Matrices are Symmetric)
A diagonal matrix $D \in \mathbb{R}^{n \times n}$ is symmetric.
Symmetric Matrices: $\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right],\left[\begin{array}{rr}-4 & 0 \\ 0 & -1\end{array}\right],\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6\end{array}\right]$
Not Symmetric: $\left[\begin{array}{rr}-4 & 0 \\ 1 & -1\end{array}\right],\left[\begin{array}{lll}1 & 2 & 3 \\ 9 & 4 & 5 \\ 8 & 0 & 6\end{array}\right],\left[\begin{array}{lll}1 & 2 & 3 \\ 9 & 4 & 5 \\ 3 & 5 & 6\end{array}\right]$

Symmetric Matrices (Properties)

Symmetric matrices have some very nice properties:

Theorem

(The Real Spectrum Theorem)
Let symmetric matrix $S \in \mathbb{R}^{n \times n}$. Then the following all hold:

- S is diagonalizable
- All eigenvalues of S are real
- If some eigenvalue λ_{k} repeats, its multiplicities match: $A M\left[\lambda_{k}\right]=G M\left[\lambda_{k}\right]$ i.e. If λ_{k} occurs j times, then λ_{k} has j linearly independent eigenvectors:

$$
\mathbf{x}_{k, 1}, \mathbf{x}_{k, 2}, \ldots, \mathbf{x}_{k, j-1}, \mathbf{x}_{k, j}
$$

PROOF: It's complicated...

Orthogonal Matrices (Definition)

Question: When is the inverse of a square matrix is simply its transpose?? Answer: When the square matrix is orthogonal:

Definition

(Orthogonal Matrix)
A square matrix $Q \in \mathbb{R}^{n \times n}$ is orthogonal if Q is invertible and $Q^{-1}=Q^{T}$

Corollary

(Determining if a Matrix is Orthogonal)
A square matrix $Q \in \mathbb{R}^{n \times n}$ is orthogonal $\Longleftrightarrow Q^{T} Q=I$

Theorem

(An Orthogonal Matrix has Orthonormal Columns)
A square matrix Q is orthogonal \Longleftrightarrow its columns form an orthonormal set.
PROOF: See the textbook if interested.

Orthogonal Matrices (Properties)

The following theorem is the cornerstone to many stable numerical algorithms involving orthogonal matrices:

Theorem

(Orthogonal Preservation Theorem)
Consider the Euclidean inner product space $\left(\mathbb{R}^{n},\langle\cdot, \cdot\rangle\right)$ where $\mathbf{v}, \mathbf{w}, \mathbf{x} \in \mathbb{R}^{n}$ and

Then orthogonal matrix $Q \in \mathbb{R}^{n \times n}$ preserves inner products, norms \& metrics:
(i) $\langle Q \mathbf{v}, Q \mathbf{w}\rangle=\langle\mathbf{v}, \mathbf{w}\rangle$,
(ii) $\|Q \mathbf{x}\|=\|\mathbf{x}\|$,
(iii) $d(Q \mathbf{v}, Q \mathbf{w})=d(\mathbf{v}, \mathbf{w})$

Orthogonal Matrices (Properties)

Theorem

(Orthogonal Preservation Theorem)
Consider the Euclidean inner product space $\left(\mathbb{R}^{n},\langle\cdot, \cdot\rangle\right)$ where $\mathbf{v}, \mathbf{w}, \mathbf{x} \in \mathbb{R}^{n}$ and

Then orthogonal matrix $Q \in \mathbb{R}^{n \times n}$ preserves inner products, norms \& metrics:
(i) $\langle Q \mathbf{v}, Q \mathbf{w}\rangle=\langle\mathbf{v}, \mathbf{w}\rangle$,
(ii) $\|Q \mathbf{x}\|=\|\mathbf{x}\|$,
(iii) $d(Q \mathbf{v}, Q \mathbf{w})=d(\mathbf{v}, \mathbf{w})$

PROOF:

(i) $\langle Q \mathbf{v}, Q \mathbf{w}\rangle:=(Q \mathbf{v})^{T}(Q \mathbf{w}) \stackrel{T 4}{=} \mathbf{v}^{T}\left(Q^{T} Q\right) \mathbf{w}=\mathbf{v}^{T}\left(Q^{-1} Q\right) \mathbf{w}=\mathbf{v}^{T} I \mathbf{w}=\mathbf{v}^{T} \mathbf{w}:=\langle\mathbf{v}, \mathbf{w}\rangle$
(ii) $\|Q \mathbf{x}\|^{2}=\langle Q \mathbf{x}, Q \mathbf{x}\rangle \stackrel{(i)}{=}\langle\mathbf{x}, \mathbf{x}\rangle=\|\mathbf{x}\|^{2} \Longrightarrow\|Q \mathbf{x}\|=\|\mathbf{x}\|$
(iii) $d(Q \mathbf{v}, Q \mathbf{w}):=\|Q \mathbf{v}-Q \mathbf{w}\| \stackrel{M 3}{=}\|Q(\mathbf{v}-\mathbf{w})\| \stackrel{(i i)}{=}\|\mathbf{v}-\mathbf{w}\|$

Eigenvectors of a Symmetric Matrix

Eigenvectors of distinct eigenvalues of a symmetric matrix have a benefit:

Theorem

(Eigenvectors of a Symmetric Matrix)
Let symmetric matrix $S \in \mathbb{R}^{n \times n}$ have eigenpairs $\left(\lambda_{1}, \mathbf{x}_{1}\right),\left(\lambda_{2}, \mathbf{x}_{2}\right)$. Then:
If eigenvalues λ_{1}, λ_{2} are distinct, then eigenvectors $\mathbf{x}_{1}, \mathbf{x}_{2}$ are orthogonal.
i.e. If $\lambda_{1} \neq \lambda_{2}$, then $\mathbf{x}_{1} \perp \mathbf{x}_{2}$.

Eigenvectors of a Symmetric Matrix

Theorem

(Eigenvectors of a Symmetric Matrix)
Let symmetric matrix $S \in \mathbb{R}^{n \times n}$ have eigenpairs $\left(\lambda_{1}, \mathbf{x}_{1}\right),\left(\lambda_{2}, \mathbf{x}_{2}\right)$. Then:
If eigenvalues λ_{1}, λ_{2} are distinct, then eigenvectors $\mathbf{x}_{1}, \mathbf{x}_{2}$ are orthogonal.
i.e. If $\lambda_{1} \neq \lambda_{2}$, then $\mathbf{x}_{1} \perp \mathbf{x}_{2}$.

Moreover: (Since S is symmetric, $S=S^{T}$)
$\lambda_{1}\left(\mathbf{x}_{1}^{T} \mathbf{x}_{2}\right)=\left(\lambda_{1} \mathbf{x}_{1}\right)^{T} \mathbf{x}_{2} \stackrel{E I G}{=}\left(S \mathbf{x}_{1}\right)^{T} \mathbf{x}_{2} \stackrel{T 4}{=} \mathbf{x}_{1}^{T} S^{T} \mathbf{x}_{2} \stackrel{S Y M}{=} \mathbf{x}_{1}^{T}\left(S \mathbf{x}_{2}\right) \stackrel{E I G}{=} \mathbf{x}_{1}^{T}\left(\lambda_{2} \mathbf{x}_{2}\right)=\lambda_{2}\left(\mathbf{x}_{1}^{T} \mathbf{x}_{2}\right)$
Hence:
$\lambda_{1}\left(\mathbf{x}_{1}^{T} \mathbf{x}_{2}\right)=\lambda_{2}\left(\mathbf{x}_{1}^{T} \mathbf{x}_{2}\right) \Longrightarrow \lambda_{1}\left(\mathbf{x}_{1}^{T} \mathbf{x}_{2}\right)-\lambda_{2}\left(\mathbf{x}_{1}^{T} \mathbf{x}_{2}\right)=0 \Longrightarrow\left(\lambda_{1}-\lambda_{2}\right)\left(\mathbf{x}_{1}^{T} \mathbf{x}_{2}\right)=0$
Since $\lambda_{1} \neq \lambda_{2} \Longleftrightarrow \lambda_{1}-\lambda_{2} \neq 0$, the equation $\left(\lambda_{1}-\lambda_{2}\right)\left(\mathbf{x}_{1}^{T} \mathbf{x}_{2}\right)=0$ implies that $\mathbf{x}_{1}^{T} \mathbf{x}_{2}=0 \Longrightarrow \mathbf{x}_{1} \perp \mathbf{x}_{2} \Longrightarrow \mathbf{x}_{1}, \mathbf{x}_{2}$ are orthogonal QED

PART II:

ORTHOGONAL DIAGONALIZATION OF A SYMMETRIC MATRIX

Orthogonally Diagonalizable Matrices

Definition

(Orthogonally Diagonalizable Matrix)
Let square matrix $A \in \mathbb{R}^{n \times n}$.
Then A is orthogonally diagonalizable if $\exists Q \in \mathbb{R}^{n \times n}$ s.t. Q is orthogonal and

$$
Q^{T} A Q=D \text { where } D \text { is diagonal. }
$$

Theorem

(Symmetric Matrices are Orthogonally Diagonalizable)
Square matrix A is orthgonally diagonalizable $\Longleftrightarrow A$ is symmetric.
PROOF: (\Longrightarrow) : Let A be orthognally diagonalizable.
Then $Q^{T} A Q=D$ for some orthogonal matrix Q and diagonal matrix D.
Now, $Q^{T} A Q=D \Longrightarrow Q Q^{T} A Q Q^{T}=Q D Q^{T} \Longrightarrow I A I=Q D Q^{T} \Longrightarrow A=Q D Q^{T}$
Now, $A^{T}=\left(Q D Q^{T}\right)^{T} \stackrel{T 4}{=} Q^{T T} D^{T} Q^{T}=Q D^{T} Q^{T} \stackrel{S Y M}{=} Q D Q^{T}=A$
$\therefore A^{T}=A \Longrightarrow A$ is symmetric
(\Leftarrow) : It's subtle - see the textbook if interested.

Orthogonal Diagonalization of a Symmetric Matrix

Proposition

(Orthogonally Diagonalizing a Symmetric Matrix)
GIVEN: Symmetric Matrix $S \in \mathbb{R}^{n \times n}$ with some possibly repeated eigenvalues. TASK: Orthogonally Diagonalize Symmetric Matrix S.
(1) Find the Eigenvalues of S : $\lambda_{1}, \ldots, \lambda_{n}$
(2) Find the Eigenspace $E_{\lambda_{k}}$ for each unique Eigenvalue λ_{k}.
(3) Find Unit Eigenvector(s) $\widehat{\mathbf{q}}_{k}$ for each unique Eigenvalue $\lambda_{k}: \quad \widehat{\mathbf{q}}_{k}=\frac{\mathbf{q}_{k}}{\left\|\mathbf{q}_{k}\right\|}$

If $A M\left[\lambda_{k}\right] \geq 2$, then apply Gram-Schmidt on the eigenvectors for λ_{k}.
(4) Let matrix $Q \in \mathbb{R}^{n \times n}$ s.t. its columns consist of the unit eigenvectors.
(5) Let diagonal matrix $\Lambda \in \mathbb{R}^{n \times n}$ s.t. the eigenvalues are on its main diagonal. The order of eigenvectors in Q determine the order of eigenvalues in Λ.
(6) Form the diagonalization of $S: \quad S=Q \Lambda Q^{T}$

NOTATION: Λ is the capital Greek letter 'lambda'.

Ortho. Diagonalization of Symmetric Matrix (Ordering)

Consistency is key when ordering eigenvalues in Λ \& eigenvectors in Q : Let 3×3 sym. matrix S have eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3} \&$ eigenvectors $\widehat{\mathbf{q}}_{1}, \widehat{\mathbf{q}}_{2}, \widehat{\mathbf{q}}_{3}$. Then, S can be orthogonally diagonalized as $S=Q \Lambda Q^{T}$, where:

$$
\begin{aligned}
& Q=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\widehat{\mathbf{q}}_{1} & \widehat{\mathbf{q}}_{2} & \widehat{\mathbf{q}}_{3} \\
\mid & \mid & \mid
\end{array}\right] \text { and } \Lambda=\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right] \\
& Q=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\widehat{\mathbf{q}}_{2} & \widehat{\mathbf{q}}_{1} & \widehat{\mathbf{q}}_{3} \\
\mid & \mid & \mid
\end{array}\right] \text { and } \Lambda=\left[\begin{array}{ccc}
\lambda_{2} & 0 & 0 \\
0 & \lambda_{1} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right] \\
& Q=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\widehat{\mathbf{q}}_{3} & \mid \widehat{\mathbf{q}}_{1} \\
\mid & \mid & \mid
\end{array}\right] \text { and } \Lambda=\left[\begin{array}{ccc}
\lambda_{3} & 0 & 0 \\
0 & \lambda_{1} & 0 \\
0 & 0 & \lambda_{2}
\end{array}\right] \\
& Q=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\widehat{\mathbf{q}}_{3} & \hat{\mathbf{q}}_{2} & \widehat{\mathbf{q}}_{1} \\
\mid & \mid & \mid
\end{array}\right] \text { ard } \Lambda=\left[\begin{array}{ccc}
\lambda_{3} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{1}
\end{array}\right]
\end{aligned}
$$

Ortho. Diagonalization of Symmetric Matrix (Ordering)

Consistency is key when ordering eigenvalues in Λ \& eigenvectors in Q : Let 3×3 sym. matrix S have eigenvalues $\lambda_{1}, \lambda_{2} \&$ eigenvectors $\widehat{\mathbf{q}}_{1,1}, \widehat{\mathbf{q}}_{1,2}, \widehat{\mathbf{q}}_{2}$. Then, S can be orthogonally diagonalized as $S=Q \Lambda Q^{T}$, where:

$$
\begin{aligned}
& Q=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\widehat{\mathbf{q}}_{1,1} & \widehat{\mathbf{q}}_{1,2} & \widehat{\mathbf{q}}_{2} \\
\mid & \mid & \mid
\end{array}\right] \text { and } \Lambda=\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{1} & 0 \\
0 & 0 & \lambda_{2}
\end{array}\right] \\
& Q=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\widehat{\mathbf{q}}_{1,2} & \widehat{\mathbf{q}}_{1,1} & \widehat{\mathbf{q}}_{2} \\
\mid & \mid & \mid
\end{array}\right] \text { and } \Lambda=\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{1} & 0 \\
0 & 0 & \lambda_{2}
\end{array}\right] \\
& Q=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\widehat{\mathbf{q}}_{1,1} & \widehat{\mathbf{q}}_{2} & \widehat{\mathbf{q}}_{1,2} \\
\mid & \mid & \mid
\end{array}\right] \text { and } \Lambda=\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{1}
\end{array}\right] \\
& Q=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\widehat{\mathbf{q}}_{2} & \widehat{\mathbf{q}}_{1,1} & \widehat{\mathbf{q}}_{1,2} \\
\mid & \mid & \mid
\end{array}\right] \text { and } \Lambda=\left[\begin{array}{ccc}
\lambda_{2} & 0 & 0 \\
0 & \lambda_{1} & 0 \\
0 & 0 & \lambda_{1}
\end{array}\right]
\end{aligned}
$$

Fin.

