Householder Reflectors: A = QRLinear Algebra

Josh Engwer

TTU

31 December 2021

PART I:

Householder Reflectors in \mathbb{R}^2 Householder Reflectors in \mathbb{R}^n

Properties of Householder Reflector Matrices

Householder Reflection onto <u>Same</u> x_1 -Semiaxis in \mathbb{R}^2 (Quadrant I)

How to reflect a vector **u** in Quadrant I onto the <u>same</u> x_1 -semiaxis, denoted as \mathbf{u}_+ :

- Observe that $\mathbf{u}_+ = +1 \cdot ||\mathbf{u}||_2 \cdot \hat{\mathbf{e}}_1$ since reflections do not alter magnitude.
- 2 Form bisecting ray, ℓ_+ , from origin outward into the same x_1 -halfplane as **u**.
- **(3)** Form & normalize vector \mathbf{h}_+ orthogonal to ℓ_+ and pointing toward same x_2 -halfplane as \mathbf{u} .
- 9 Project vector \mathbf{u} onto unit vector $\hat{\mathbf{h}}_+$.
- Subtract twice this projection from vector \mathbf{u} , resulting in $\mathbf{u}_{+} = \mathbf{u} 2 \cdot \text{proj}_{\hat{\mathbf{h}}_{\perp}} \mathbf{u}$.

Householder Reflection onto Other x_1 -Semiaxis in \mathbb{R}^2 (Quadrant I)

How to reflect a vector \mathbf{u} in Quadrant I onto the <u>other x_1 -semiaxis</u>, denoted as \mathbf{u}_- :

- Observe that $\mathbf{u}_{-} = -1 \cdot ||\mathbf{u}||_2 \cdot \hat{\mathbf{e}}_1$ since reflections do not alter magnitude.
- 2 Form bisecting ray, ℓ_{-} , from origin outward into the <u>other</u> x_1 -halfplane as **u**.
- **3** Form & normalize vector \mathbf{h}_{-} orthogonal to ℓ_{-} and pointing toward same x_{2} -halfplane as \mathbf{u} .
- Project vector u onto unit vector \hat{h}_{-} .
- Subtract twice this projection from vector **u**, resulting in $\mathbf{u}_{-} = \mathbf{u} 2 \cdot \text{proj}_{\hat{\mathbf{h}}}$ **u**.

Householder Reflection onto <u>Same</u> x_1 -Semiaxis in \mathbb{R}^2 (Quadrant II)

How to reflect a vector **u** in Quadrant II onto the <u>same</u> x_1 -semiaxis, denoted as \mathbf{u}_+ :

- Observe that $\mathbf{u}_{+} = -1 \cdot ||\mathbf{u}||_2 \cdot \hat{\mathbf{e}}_1$ since reflections do not alter magnitude.
- 2 Form bisecting ray, ℓ_+ , from origin outward into the same x_1 -halfplane as **u**.
- 3 Form & normalize vector \mathbf{h}_+ orthogonal to ℓ_+ and pointing toward same x_2 -halfplane as \mathbf{u} .
- Project vector u onto unit vector $\hat{\mathbf{h}}_+$.
- Subtract twice this projection from vector **u**, resulting in $\mathbf{u}_{+} = \mathbf{u} 2 \cdot \text{proj}_{\hat{\mathbf{h}}_{\perp}} \mathbf{u}$.

Householder Reflection onto Other x_1 -Semiaxis in \mathbb{R}^2 (Quadrant II)

How to reflect a vector **u** in Quadrant II onto the <u>other</u> x_1 -semiaxis, denoted as **u**_:

- Observe that $\mathbf{u}_{-} = +1 \cdot ||\mathbf{u}||_2 \cdot \hat{\mathbf{e}}_1$ since reflections do not alter magnitude.
- 2 Form bisecting ray, ℓ_{-} , from origin outward into the <u>other</u> x_1 -halfplane as **u**.
- 3 Form & normalize vector \mathbf{h}_{-} orthogonal to ℓ_{-} and pointing toward same x_{2} -halfplane as \mathbf{u} .
- Project vector u onto unit vector $\hat{\mathbf{h}}_{-}$.
- Subtract twice this projection from vector \mathbf{u} , resulting in $\mathbf{u}_{-} = \mathbf{u} 2 \cdot \text{proj}_{\hat{\mathbf{h}}} \mathbf{u}$.

Householder Reflection onto <u>Same</u> x_1 -Semiaxis in \mathbb{R}^2 (Quadrant III)

How to reflect a vector \mathbf{u} in Quadrant III onto the <u>same</u> x_1 -semiaxis, denoted as \mathbf{u}_+ :

- Observe that $\mathbf{u}_{+} = -1 \cdot ||\mathbf{u}||_2 \cdot \hat{\mathbf{e}}_1$ since reflections do not alter magnitude.
- 2 Form bisecting ray, ℓ_+ , from origin outward into the same x_1 -halfplane as **u**.
- **(3)** Form & normalize vector \mathbf{h}_+ orthogonal to ℓ_+ and pointing toward same x_2 -halfplane as \mathbf{u} .
- 9 Project vector \mathbf{u} onto unit vector $\hat{\mathbf{h}}_+$.
- **5** Subtract twice this projection from vector **u**, resulting in $\mathbf{u}_+ = \mathbf{u} 2 \cdot \text{proj}_{\hat{\mathbf{h}}_+} \mathbf{u}$.

Householder Reflection onto Other x_1 -Semiaxis in \mathbb{R}^2 (Quadrant III)

How to reflect a vector **u** in Quadrant III onto the <u>other</u> x_1 -semiaxis, denoted as **u**_:

- Observe that $\mathbf{u}_{-} = +1 \cdot ||\mathbf{u}||_2 \cdot \hat{\mathbf{e}}_1$ since reflections do not alter magnitude.
- 2 Form bisecting ray, ℓ_{-} , from origin outward into the <u>other</u> x_1 -halfplane as **u**.
- 3 Form & normalize vector \mathbf{h}_{-} orthogonal to ℓ_{-} and pointing toward same x_{2} -halfplane as \mathbf{u} .
- Project vector u onto unit vector h
 _.
- Subtract twice this projection from vector \mathbf{u} , resulting in $\mathbf{u}_{-} = \mathbf{u} 2 \cdot \text{proj}_{\hat{\mathbf{h}}}$ \mathbf{u} .

Householder Reflection onto <u>Same</u> x_1 -Semiaxis in \mathbb{R}^2 (Quadrant IV)

How to reflect a vector **u** in Quadrant IV onto the <u>same</u> x_1 -semiaxis, denoted as \mathbf{u}_+ :

- Observe that $\mathbf{u}_{+} = +1 \cdot ||\mathbf{u}||_2 \cdot \hat{\mathbf{e}}_1$ since reflections do not alter magnitude.
- 2 Form bisecting ray, ℓ_+ , from origin outward into the same x_1 -halfplane as **u**.
- **(3)** Form & normalize vector \mathbf{h}_+ orthogonal to ℓ_+ and pointing toward same x_2 -halfplane as \mathbf{u} .
- Project vector u onto unit vector h+.
- Subtract twice this projection from vector \mathbf{u} , resulting in $\mathbf{u}_+ = \mathbf{u} 2 \cdot \text{proj}_{\hat{\mathbf{h}}_+} \mathbf{u}$.

Householder Reflection onto Other x_1 -Semiaxis in \mathbb{R}^2 (Quadrant IV)

How to reflect a vector **u** in Quadrant IV onto the <u>other</u> x_1 -semiaxis, denoted as **u**_:

- Observe that $\mathbf{u}_{-} = -1 \cdot ||\mathbf{u}||_2 \cdot \hat{\mathbf{e}}_1$ since reflections do not alter magnitude.
- 2 Form bisecting ray, ℓ_{-} , from origin outward into the <u>other</u> x_1 -halfplane as **u**.
- 3 Form & normalize vector \mathbf{h}_{-} orthogonal to ℓ_{-} and pointing toward same x_{2} -halfplane as \mathbf{u} .
- 9 Project vector \mathbf{u} onto unit vector $\hat{\mathbf{h}}_{-}$.
- Subtract twice this projection from vector \mathbf{u} , resulting in $\mathbf{u}_{-} = \mathbf{u} 2 \cdot \text{proj}_{\hat{\mathbf{h}}} \mathbf{u}$.

Definition

(Signum Function)

$$sign(x) := \begin{cases} +1 & , \text{ if } x > 0 \\ 0 & , \text{ if } x = 0 \\ -1 & , \text{ if } x < 0 \end{cases}$$

The signum function can be modified so that zero is forced to be either +1 or -1:

Definition

(Upper-Signum Function)

$$\overline{\operatorname{sign}}(x) := \left\{ \begin{array}{cc} +1 & \text{, if } x \ge 0 \\ -1 & \text{, if } x < 0 \end{array} \right.$$

Definition

(Lower-Signum Function)

$$\underline{\operatorname{sign}}(x) := \begin{cases} +1 & \text{, if } x > 0\\ -1 & \text{, if } x \le 0 \end{cases}$$

For Householder Reflectors, it's convenient to use the upper-signum function.

Proposition

(Same-Semiaxis Householder Reflectors)

Let vector $\mathbf{u} \in \mathbb{R}^n$. Then:

(1)
$$\mathbf{h}_{+} = \mathbf{u} - \overline{sign}(u_1) \cdot ||\mathbf{u}||_2 \cdot \hat{\mathbf{e}}_1$$

(2) $\hat{\mathbf{h}}_{+} = \mathbf{h}_{+}/||\mathbf{h}_{+}||_2$
(3) $\ell_{+} = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{h}_{+} \cdot \mathbf{x} = 0\}$

(4)
$$\bar{P}_+ = \hat{\mathbf{h}}_+ \hat{\mathbf{h}}_+^T$$

(5) $H_+ = I - 2\bar{P}_-$

(6)
$$\mathbf{u}_+ = H_+\mathbf{u} = \mathbf{u} - 2 \cdot \textit{proj}_{\hat{\mathbf{h}}_+}\mathbf{u}$$

SANITY CHECKS: *H*₊ is symmetric and orthogonal.

Proposition

(Other-Semiaxis Householder Reflectors)

Let vector $\mathbf{u} \in \mathbb{R}^n$. Then:

1)
$$\mathbf{h}_{-} = \mathbf{u} + \overline{sign}(u_1) \cdot ||\mathbf{u}||_2 \cdot \hat{\mathbf{e}}_1$$

2) $\hat{\mathbf{h}}_{-} = \mathbf{h}_{-}/||\mathbf{h}_{-}||_2$
3) $\ell_{-} = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{h}_{-} \cdot \mathbf{x} = 0\}$

(4)
$$\bar{P}_{-} = \hat{\mathbf{h}}_{-} \hat{\mathbf{h}}_{-}^{T}$$

(5) $H_{-} = I - 2\bar{P}_{-}$

(6)
$$\mathbf{u}_{-} = H_{-}\mathbf{u} = \mathbf{u} - 2 \cdot \rho roj_{\hat{\mathbf{h}}_{-}}\mathbf{u}$$

SANITY CHECKS: H_ is symmetric and orthogonal.

Proposition

(Properties of Householder Reflector Matrices)

Let $H := \hat{\mathbf{h}}\hat{\mathbf{h}}^T \in \mathbb{R}^{n \times n}$ be a Householder Reflector matrix. Then:

- (1) *H* is symmetric:
- (2) H is orthogonal:
- (3) *H* is involutory:

 $H^{T} = H$ $H^{-1} = H^{T}$ $H^{2} = I$

- $\begin{array}{cc} (4) & H\hat{\mathbf{h}} = -\hat{\mathbf{h}} \\ (5) & H\hat{\mathbf{h}} = -\hat{\mathbf{h}} \end{array}$
- (5) $H\mathbf{h}_{\perp} = \mathbf{h}_{\perp} \ \forall \mathbf{h}_{\perp} \in \{\hat{\mathbf{h}}\}^{\perp}$

(6) The eigenvalues of *H* are: $-1; \underbrace{1, 1, \cdots, 1}_{1, 1, \dots, 1}$

(7) det(H) = -1

PROOF: Left as an exercise for the reader.

15/24

PART II:

Full QR Factorization via Householder Reflectors

Suppose
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
. Then:
 $\mathbf{a}_1 := (a_{11}, a_{21})^T \implies \mathbf{h}_1 = \mathbf{a}_1 \pm \overline{\text{sign}}(a_{11}) \cdot ||\mathbf{a}_1||_2 \cdot \hat{\mathbf{e}}_1 \implies \hat{\mathbf{h}}_1 = \mathbf{h}_1 / ||\mathbf{h}_1||_2$
 $\implies H'_1 = I - 2\hat{\mathbf{h}}_1 \hat{\mathbf{h}}_1^T \implies H_1 = \begin{bmatrix} I_{0 \times 0} \\ H'_1 \end{bmatrix} = H'_1$
 $H_1 A = \begin{bmatrix} a'_{11} & a'_{12} \\ 0 & a'_{22} \end{bmatrix} = R$
 $\implies Q = (H_1)^{-1} = H_1^{-1} \stackrel{ORTH}{=} H_1^T \stackrel{SYM}{=} H_1$

Suppose $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}$. Then:

$$\mathbf{a}_{1} := (a_{11}, a_{21}, a_{31})^{T} \implies \mathbf{h}_{1} = \mathbf{a}_{1} \pm \overline{\operatorname{sign}}(a_{11}) \cdot ||\mathbf{a}_{1}||_{2} \cdot \hat{\mathbf{e}}_{1} \implies \hat{\mathbf{h}}_{1} = \mathbf{h}_{1}/||\mathbf{h}_{1}||_{2}$$
$$\implies H'_{1} = I - 2\hat{\mathbf{h}}_{1}\hat{\mathbf{h}}_{1}^{T} \implies H_{1} = \begin{bmatrix} I_{0 \times 0} \\ H'_{1} \end{bmatrix} = H'_{1}$$
$$H_{1}A = \begin{bmatrix} a'_{11} & a'_{12} \\ 0 & a'_{22} \\ 0 & a'_{32} \end{bmatrix}$$

$$\mathbf{a}_1' := (a_{22}', a_{32}')^T \implies \mathbf{h}_2 = \mathbf{a}_1' \pm \overline{\operatorname{sign}}(a_{22}') \cdot ||\mathbf{a}_1'||_2 \cdot \hat{\mathbf{e}}_1 \implies \hat{\mathbf{h}}_2 = \mathbf{h}_2/||\mathbf{h}_2||_2$$

$$\implies H_2' = I - 2\hat{\mathbf{h}}_2 \hat{\mathbf{h}}_2^T \implies H_2 = \begin{bmatrix} I_{1 \times 1} \\ H_2' \end{bmatrix} = \begin{bmatrix} 1 \\ H_2' \end{bmatrix}$$
$$H_2 H_1 A = \begin{bmatrix} a_{11}' & a_{12}' \\ 0 & a_{22}'' \\ 0 & 0 \end{bmatrix} = R$$
$$\implies Q = (H_2 H_1)^{-1} = H_1^{-1} H_2^{-1} \stackrel{ORTH}{=} H_1^T H_2^T \stackrel{SYM}{=} H_1 H_2$$

Let
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \implies H_1 = \begin{bmatrix} I_{0 \times 0} \\ H_1' \end{bmatrix} = \begin{bmatrix} H_1' \end{bmatrix}$$

 $\implies H_1 A = \begin{bmatrix} a_{11}' & a_{12}' \\ 0 & a_{22}' \end{bmatrix} = R$

$$\implies Q = (H_1)^{-1} = H_1^{-1} \stackrel{ORTH}{=} H_1^T \stackrel{SYM}{=} H_1$$

Let
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} \implies H_1 = \begin{bmatrix} I_{0 \times 0} \\ H'_1 \end{bmatrix} = \begin{bmatrix} H'_1 \end{bmatrix}$$

 $\implies H_1 A = \begin{bmatrix} a'_{11} & a'_{12} \\ 0 & a'_{22} \\ 0 & a'_{32} \end{bmatrix} \implies H_2 = \begin{bmatrix} I_{1 \times 1} \\ H'_2 \end{bmatrix} = \begin{bmatrix} 1 \\ H'_2 \end{bmatrix}$
 $\implies H_2 H_1 A = \begin{bmatrix} a'_{11} & a'_{12} \\ 0 & a''_{22} \\ 0 & 0 \end{bmatrix} = R$

 $\implies Q = (H_2H_1)^{-1} = H_1^{-1}H_2^{-1} \stackrel{ORTH}{=} H_1^TH_2^T \stackrel{SYM}{=} H_1H_2$

Let
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{bmatrix} \implies H_1 = \begin{bmatrix} I_{0 \times 0} \\ H_1' \end{bmatrix} = \begin{bmatrix} H_1' \end{bmatrix}$$
$$\implies H_1 A = \begin{bmatrix} a_{11}' & a_{12}' & a_{13}' \\ 0 & a_{22}' & a_{23}' \\ 0 & a_{32}' & a_{33}' \\ 0 & a_{42}' & a_{43}' \end{bmatrix} \implies H_2 = \begin{bmatrix} I_{1 \times 1} \\ H_2' \end{bmatrix} = \begin{bmatrix} 1 \\ H_2' \end{bmatrix}$$
$$\implies H_2 H_1 A = \begin{bmatrix} a_{11}' & a_{12}' & a_{13}' \\ 0 & a_{22}' & a_{23}' \\ 0 & 0 & a_{33}' \\ 0 & 0 & a_{43}' \end{bmatrix} \implies H_3 = \begin{bmatrix} I_{2 \times 2} \\ H_3' \end{bmatrix} = \begin{bmatrix} 1 \\ H_3' \end{bmatrix}$$
$$\implies H_3 H_2 H_1 A = \begin{bmatrix} a_{11}' & a_{12}' & a_{13}' \\ 0 & a_{22}' & a_{23}' \\ 0 & 0 & a_{43}' \end{bmatrix} \implies H_3 = \begin{bmatrix} I_{2 \times 2} \\ H_3' \end{bmatrix} = \begin{bmatrix} 1 \\ H_3' \end{bmatrix}$$

 $\implies Q = (H_3H_2H_1)^{-1} = H_1^{-1}H_2^{-1}H_3^{-1} \stackrel{ORTH}{=} H_1^TH_2^TH_3^T \stackrel{SYM}{=} H_1H_2H_3$

21/24

Which Householder Reflector to Choose??

There are two Householder Reflectors to choose from:

$$\begin{split} \mathbf{h}_{+} &= \mathbf{a}_{1}^{(1)} - \overline{\text{sign}}(a_{11}^{(1)}) \cdot ||\mathbf{a}_{1}^{(1)}||_{2} \cdot \hat{\mathbf{e}}_{1} \\ \mathbf{h}_{-} &= \mathbf{a}_{1}^{(1)} + \overline{\text{sign}}(a_{11}^{(1)}) \cdot ||\mathbf{a}_{1}^{(1)}||_{2} \cdot \hat{\mathbf{e}}_{1} \end{split}$$

So, given the Householder Reflector expression containing a \pm symbol:

$$\mathbf{h}_1 = \mathbf{a}_1^{(1)} \pm \overline{\mathsf{sign}}(a_{11}^{(1)}) \cdot ||\mathbf{a}_1^{(1)}||_2 \cdot \hat{\mathbf{e}}_1$$

...which sign should one choose??

Answer: It depends!

If computing Householder Reflectors by hand (using exact arithmetic), either + or - is fine, so pick one.

However, if computing Householder Reflectors via a computer, always pick the + (i.e. always pick $\mathbf{h}_{-})$ because the result will be more accurate.

S.J. Leon, *Linear Algebra with Applications*, 9th Ed., Pearson, 2015. A. Householder, "Unitary Triangularization of a Nonsymmetric Matrix", *J. ACM*, **5** (1958), 339-342.

Proposition

(Full QR Factorization via Householder Reflectors)

<u>GIVEN</u>: Tall or square $(m \ge n)$ full column rank matrix $A_{m \times n}$ with columns \mathbf{a}_k .

<u>TASK:</u> Factor A = QR where $Q_{m \times m}$ has orthonormal columns $\widehat{\mathbf{q}}_k$ and $R_{m \times n}$ is upper triangular.

(0) For each upcoming ±: by computer, always pick +; by hand, either + or - is fine, pick one.
(1) Build Householder Reflector, H₁, that nullifies sub-diagonal 1st column of A:

$$\mathbf{a}_{1}^{(1)} := (a_{11}, \cdots, a_{m1})^{T} \implies \mathbf{h}_{1} = \mathbf{a}_{1}^{(1)} \pm \overline{sign}(a_{11}^{(1)}) \cdot ||\mathbf{a}_{1}^{(1)}||_{2} \cdot \hat{\mathbf{e}}_{1} \implies \hat{\mathbf{h}}_{1} = \mathbf{h}_{1}/||\mathbf{h}_{1}||_{2}$$
$$\implies H_{1}' = I - 2\hat{\mathbf{h}}_{1}\hat{\mathbf{h}}_{1}^{T} \implies H_{1} = \begin{bmatrix} I_{0\times 0} \\ H_{1}' \end{bmatrix} = H_{1}'$$

(2) For each $j = 2, \dots, n$:

Build Householder Reflector, H_j , that nullifies sub-diagonal j^{th} column of $H_jH_{j-1}\cdots H_2H_1A := C_j$:

$$\mathbf{c}_{1}^{(j)} := \left(c_{jj}^{(j)}, \cdots, c_{mj}^{(j)}\right)^{T} \implies \mathbf{h}_{j} = \mathbf{c}_{1}^{(j)} \pm \overline{sign}(c_{jj}^{(j)}) \cdot ||\mathbf{c}_{1}^{(j)}||_{2} \cdot \hat{\mathbf{e}}_{1} \implies \hat{\mathbf{h}}_{j} = \mathbf{h}_{j}/||\mathbf{h}_{j}||_{2}$$
$$\implies H_{j}' = I - 2\hat{\mathbf{h}}_{j}\hat{\mathbf{h}}_{j}^{T} \implies H_{j} = \begin{bmatrix} I_{(j-1)\times(j-1)} & \\ H_{j}' \end{bmatrix}$$
$$= H_{n}H_{n-1}\cdots H_{2}H_{1}A$$

 $(4) \quad Q = H_1 H_2 \cdots H_{n-1} H_n$

(3) R

S.J. Leon, *Linear Algebra with Applications*, 9th Ed., Pearson, 2015. A. Householder, "Unitary Triangularization of a Nonsymmetric Matrix", *J. ACM*, **5** (1958), 339-342.

Josh Engwer (TTU)

Fin.