Householder Reflectors: $A=Q R$ Linear Algebra

Josh Engwer

TTU

31 December 2021

PART I:

Householder Reflectors in \mathbb{R}^{2} Householder Reflectors in \mathbb{R}^{n}

Properties of Householder Reflector Matrices

Householder Reflection onto Same x_{1}-Semiaxis in \mathbb{R}^{2} (Quadrant I)

How to reflect a vector \mathbf{u} in Quadrant I onto the same x_{1}-semiaxis, denoted as \mathbf{u}_{+}:
(1) Observe that $\mathbf{u}_{+}=+1 \cdot\|\mathbf{u}\|_{2} \cdot \hat{\mathbf{e}}_{1}$ since reflections do not alter magnitude.
(2) Form bisecting ray, ℓ_{+}, from origin outward into the same x_{1}-halfplane as \mathbf{u}.
(3) Form \& normalize vector \mathbf{h}_{+}orthogonal to ℓ_{+}and pointing toward same x_{2}-halfplane as \mathbf{u}.
(4) Project vector u onto unit vector $\hat{\mathbf{h}}_{+}$.
(5) Subtract twice this projection from vector \mathbf{u}, resulting in $\mathbf{u}_{+}=\mathbf{u}-2 \cdot \operatorname{proj}_{\hat{\mathbf{h}}_{+}} \mathbf{u}$.

Householder Reflection onto Other x_{1}-Semiaxis in \mathbb{R}^{2} (Quadrant I)

How to reflect a vector \mathbf{u} in Quadrant I onto the other x_{1}-semiaxis, denoted as \mathbf{u}_{-}:
(1) Observe that $\mathbf{u}_{-}=-1 \cdot\|\mathbf{u}\|_{2} \cdot \hat{\mathbf{e}}_{1}$ since reflections do not alter magnitude.
(2) Form bisecting ray, ℓ_{-}, from origin outward into the other x_{1}-halfplane as \mathbf{u}.
(3) Form \& normalize vector \mathbf{h}_{-}orthogonal to ℓ_{-}and pointing toward same x_{2}-halfplane as \mathbf{u}.
(4) Project vector \mathbf{u} onto unit vector $\hat{\mathbf{h}}_{-}$.
(5) Subtract twice this projection from vector \mathbf{u}, resulting in $\mathbf{u}_{-}=\mathbf{u}-2 \cdot \operatorname{proj}_{\hat{\mathbf{h}}_{-}} \mathbf{u}$

Householder Reflection onto Same x_{1}-Semiaxis in \mathbb{R}^{2} (Quadrant II)

How to reflect a vector \mathbf{u} in Quadrant II onto the same x_{1}-semiaxis, denoted as \mathbf{u}_{+}:
(1) Observe that $\mathbf{u}_{+}=-1 \cdot\|\mathbf{u}\|_{2} \cdot \hat{\mathbf{e}}_{1}$ since reflections do not alter magnitude.
(2) Form bisecting ray, ℓ_{+}, from origin outward into the same x_{1}-halfplane as \mathbf{u}.
(3) Form \& normalize vector \mathbf{h}_{+}orthogonal to ℓ_{+}and pointing toward same x_{2}-halfplane as \mathbf{u}.
(4) Project vector u onto unit vector $\hat{\mathbf{h}}_{+}$.
(5) Subtract twice this projection from vector \mathbf{u}, resulting in $\mathbf{u}_{+}=\mathbf{u}-2 \cdot \operatorname{proj}_{\hat{\mathbf{h}}_{+}} \mathbf{u}$.

Householder Reflection onto Other x_{1}-Semiaxis in \mathbb{R}^{2} (Quadrant II)

How to reflect a vector \mathbf{u} in Quadrant II onto the other x_{1}-semiaxis, denoted as \mathbf{u}_{-}:
(1) Observe that $\mathbf{u}_{-}=+1 \cdot\|\mathbf{u}\|_{2} \cdot \hat{\mathbf{e}}_{1}$ since reflections do not alter magnitude.
(2) Form bisecting ray, ℓ_{-}, from origin outward into the other x_{1}-halfplane as \mathbf{u}.
(3) Form \& normalize vector \mathbf{h}_{-}orthogonal to ℓ_{-}and pointing toward same x_{2}-halfplane as \mathbf{u}.
(4) Project vector \mathbf{u} onto unit vector $\hat{\mathbf{h}}_{-}$.
(5) Subtract twice this projection from vector \mathbf{u}, resulting in $\mathbf{u}_{-}=\mathbf{u}-2 \cdot \operatorname{proj}_{\hat{h}_{-}} \mathbf{u}$.

Householder Reflection onto Same x_{1}-Semiaxis in \mathbb{R}^{2} (Quadrant III)

How to reflect a vector \mathbf{u} in Quadrant III onto the same x_{1}-semiaxis, denoted as \mathbf{u}_{+}:
(1) Observe that $\mathbf{u}_{+}=-1 \cdot\|\mathbf{u}\|_{2} \cdot \hat{\mathbf{e}}_{1}$ since reflections do not alter magnitude.
(2) Form bisecting ray, ℓ_{+}, from origin outward into the same x_{1}-halfplane as \mathbf{u}.
(3) Form \& normalize vector \mathbf{h}_{+}orthogonal to ℓ_{+}and pointing toward same x_{2}-halfplane as \mathbf{u}.
(4) Project vector u onto unit vector $\hat{\mathbf{h}}_{+}$.
(5) Subtract twice this projection from vector \mathbf{u}, resulting in $\mathbf{u}_{+}=\mathbf{u}-2 \cdot \operatorname{proj}_{\hat{\mathbf{h}}_{+}} \mathbf{u}$.

Householder Reflection onto Other x_{1}-Semiaxis in \mathbb{R}^{2} (Quadrant III)

How to reflect a vector \mathbf{u} in Quadrant III onto the other x_{1}-semiaxis, denoted as \mathbf{u}_{-}:
(1) Observe that $\mathbf{u}_{-}=+1 \cdot\|\mathbf{u}\|_{2} \cdot \hat{\mathbf{e}}_{1}$ since reflections do not alter magnitude.
(2) Form bisecting ray, ℓ_{-}, from origin outward into the other x_{1}-halfplane as \mathbf{u}.
(3) Form \& normalize vector \mathbf{h}_{-}orthogonal to ℓ_{-}and pointing toward same x_{2}-halfplane as \mathbf{u}.
(4) Project vector \mathbf{u} onto unit vector $\hat{\mathbf{h}}_{-}$.
(5) Subtract twice this projection from vector \mathbf{u}, resulting in $\mathbf{u}_{-}=\mathbf{u}-2 \cdot \operatorname{proj}_{\hat{\mathbf{h}}_{-}} \mathbf{u}$

Householder Reflection onto Same x_{1}-Semiaxis in \mathbb{R}^{2} (Quadrant IV)

How to reflect a vector \mathbf{u} in Quadrant IV onto the same x_{1}-semiaxis, denoted as \mathbf{u}_{+}:
(1) Observe that $\mathbf{u}_{+}=+1 \cdot\|\mathbf{u}\|_{2} \cdot \hat{\mathbf{e}}_{1}$ since reflections do not alter magnitude.
(2) Form bisecting ray, ℓ_{+}, from origin outward into the same x_{1}-halfplane as \mathbf{u}.
(3) Form \& normalize vector \mathbf{h}_{+}orthogonal to ℓ_{+}and pointing toward same x_{2}-halfplane as \mathbf{u}.
(4) Project vector \mathbf{u} onto unit vector $\hat{\mathbf{h}}_{+}$.
(5) Subtract twice this projection from vector \mathbf{u}, resulting in $\mathbf{u}_{+}=\mathbf{u}-2 \cdot \operatorname{proj}_{\hat{\mathbf{h}}_{+}} \mathbf{u}$.

Householder Reflection onto Other x_{1}-Semiaxis in \mathbb{R}^{2} (Quadrant IV)

How to reflect a vector \mathbf{u} in Quadrant IV onto the other x_{1}-semiaxis, denoted as \mathbf{u}_{-}:
(1) Observe that $\mathbf{u}_{-}=-1 \cdot\|\mathbf{u}\|_{2} \cdot \hat{\mathbf{e}}_{1}$ since reflections do not alter magnitude.
(2) Form bisecting ray, ℓ_{-}, from origin outward into the other x_{1}-halfplane as \mathbf{u}.
(3) Form \& normalize vector \mathbf{h}_{-}orthogonal to ℓ_{-}and pointing toward same x_{2}-halfplane as \mathbf{u}.
(4) Project vector \mathbf{u} onto unit vector $\hat{\mathbf{h}}_{-}$.
(5) Subtract twice this projection from vector \mathbf{u}, resulting in $\mathbf{u}_{-}=\mathbf{u}-2 \cdot \operatorname{proj}_{\hat{\mathbf{h}}_{-}} \mathbf{u}$

Signum Function

Definition

(Signum Function)

$$
\operatorname{sign}(x):=\left\{\begin{aligned}
+1 & , \text { if } x>0 \\
0 & , \text { if } x=0 \\
-1 & \text {, if } x<0
\end{aligned}\right.
$$

Signum Function

The signum function can be modified so that zero is forced to be either +1 or -1 :

Definition

(Upper-Signum Function)

$$
\overline{\operatorname{sign}}(x):= \begin{cases}+1 & \text {, if } x \geq 0 \\ -1 & \text {, if } x<0\end{cases}
$$

Definition

(Lower-Signum Function)

$$
\underline{\operatorname{sign}}(x):= \begin{cases}+1 & \text {, if } x>0 \\ -1 & \text {, if } x \leq 0\end{cases}
$$

For Householder Reflectors, it's convenient to use the upper-signum function.

Same-Semiaxis Householder Reflectors in \mathbb{R}^{n}

Proposition

(Same-Semiaxis Householder Reflectors)
Let vector $\mathbf{u} \in \mathbb{R}^{n}$. Then:
(1) $\mathbf{h}_{+}=\mathbf{u}-\overline{\operatorname{sign}}\left(u_{1}\right) \cdot\|\mathbf{u}\|_{2} \cdot \hat{\mathbf{e}}_{1}$
(2) $\hat{\mathbf{h}}_{+}=\mathbf{h}_{+} /\left\|\mathbf{h}_{+}\right\|_{2}$
(3) $\ell_{+}=\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{h}_{+} \cdot \mathbf{x}=0\right\}$
(4) $\bar{P}_{+}=\hat{\mathbf{h}}_{+} \hat{\mathbf{h}}_{+}^{T}$
(5) $H_{+}=I-2 \bar{P}_{+}$
(6) $\mathbf{u}_{+}=H_{+} \mathbf{u}=\mathbf{u}-2 \cdot \operatorname{proj}_{\hat{h}_{+}} \mathbf{u}$

SANITY CHECKS: H_{+}is symmetric and orthogonal.

Other-Semiaxis Householder Reflectors in \mathbb{R}^{n}

Proposition

(Other-Semiaxis Householder Reflectors)
Let vector $\mathbf{u} \in \mathbb{R}^{n}$. Then:
(1) $\mathbf{h}_{-}=\mathbf{u}+\overline{\operatorname{sign}}\left(u_{1}\right) \cdot\|\mathbf{u}\|_{2} \cdot \hat{\mathbf{e}}_{1}$
(2) $\hat{\mathbf{h}}_{-}=\mathbf{h}_{-} /\left\|\mathbf{h}_{-}\right\|_{2}$
(3) $\ell_{-}=\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{h}_{-} \cdot \mathbf{x}=0\right\}$
(4) $\bar{P}_{-}=\hat{\mathbf{h}}_{-} \hat{\mathbf{h}}_{-}^{T}$
(5) $H_{-}=I-2 \bar{P}_{-}$
(6) $\mathbf{u}_{-}=H_{-} \mathbf{u}=\mathbf{u}-2 \cdot \operatorname{proj}_{\hat{\mathbf{h}}_{-}} \mathbf{u}$

SANITY CHECKS: H_{-}is symmetric and orthogonal.

Properties of Householder Reflector Matrices

Proposition

(Properties of Householder Reflector Matrices)
Let $H:=\hat{\mathbf{h}} \hat{\mathbf{h}}^{T} \in \mathbb{R}^{n \times n}$ be a Householder Reflector matrix. Then:
(1) H is symmetric:

$$
\begin{aligned}
H^{T} & =H \\
H^{-1} & =H^{T} \\
H^{2} & =I
\end{aligned}
$$

(2) H is orthogonal:
(3) H is involutory:
(4) $H \hat{\mathbf{h}}=-\hat{\mathbf{h}}$
(5) $H \mathbf{h}_{\perp}=\mathbf{h}_{\perp} \forall \mathbf{h}_{\perp} \in\{\hat{\mathbf{h}}\}^{\perp}$
(6) The eigenvalues of H are: $-1 ; \underbrace{1,1, \cdots, 1}_{n-1}$
(7) $\operatorname{det}(H)=-1$

PROOF: Left as an exercise for the reader.

PART II:

Full $Q R$ Factorization via Householder Reflectors

Full $Q R$ Factorization via Householder Reflectors

Suppose $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$. Then:
$\mathbf{a}_{1}:=\left(a_{11}, a_{21}\right)^{T} \Longrightarrow \mathbf{h}_{1}=\mathbf{a}_{1} \pm \overline{\operatorname{sign}}\left(a_{11}\right) \cdot\left\|\mathbf{a}_{1}\right\|_{2} \cdot \hat{\mathbf{e}}_{1} \Longrightarrow \hat{\mathbf{h}}_{1}=\mathbf{h}_{1} /\left\|\mathbf{h}_{1}\right\|_{2}$
$\Longrightarrow H_{1}^{\prime}=I-2 \hat{\mathbf{h}}_{1} \hat{\mathbf{h}}_{1}^{T} \Longrightarrow H_{1}=\left[\begin{array}{ll}I_{0 \times 0} & \\ & H_{1}^{\prime}\end{array}\right]=H_{1}^{\prime}$
$H_{1} A=\left[\begin{array}{cc}a_{11}^{\prime} & a_{12}^{\prime} \\ 0 & a_{22}^{\prime}\end{array}\right]=R$
$\Longrightarrow Q=\left(H_{1}\right)^{-1}=H_{1}^{-1} \stackrel{O R T H}{=} H_{1}^{T} \stackrel{S Y M}{=} H_{1}$

Full $Q R$ Factorization via Householder Reflectors

Suppose $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right]$. Then:

$$
\begin{aligned}
& \mathbf{a}_{1}:=\left(a_{11}, a_{21}, a_{31}\right)^{T} \Longrightarrow \mathbf{h}_{1}=\mathbf{a}_{1} \pm \overline{\operatorname{sign}}\left(a_{11}\right) \cdot\left\|\mathbf{a}_{1}\right\|_{2} \cdot \hat{\mathbf{e}}_{1} \Longrightarrow \hat{\mathbf{h}}_{1}=\mathbf{h}_{1} /\left\|\mathbf{h}_{1}\right\|_{2} \\
& \Longrightarrow H_{1}^{\prime}=I-2 \hat{\mathbf{h}}_{1} \hat{\mathbf{h}}_{1}^{T} \Longrightarrow H_{1}=\left[\begin{array}{cc}
I_{0 \times 0} & \\
& H_{1}^{\prime}
\end{array}\right]=H_{1}^{\prime}
\end{aligned}
$$

$$
H_{1} A=\left[\begin{array}{cc}
a_{11}^{\prime} & a_{12}^{\prime} \\
0 & a_{22}^{\prime} \\
0 & a_{32}^{\prime}
\end{array}\right]
$$

$$
\mathbf{a}_{1}^{\prime}:=\left(a_{22}^{\prime}, a_{32}^{\prime}\right)^{T} \Longrightarrow \mathbf{h}_{2}=\mathbf{a}_{1}^{\prime} \pm \overline{\operatorname{sign}}\left(a_{22}^{\prime}\right) \cdot\left\|\mathbf{a}_{1}^{\prime}\right\|_{2} \cdot \hat{\mathbf{e}}_{1} \Longrightarrow \hat{\mathbf{h}}_{2}=\mathbf{h}_{2} /\left\|\mathbf{h}_{2}\right\|_{2}
$$

$$
\Longrightarrow H_{2}^{\prime}=I-2 \hat{\mathbf{h}}_{2} \hat{\mathbf{h}}_{2}^{T} \Longrightarrow H_{2}=\left[\begin{array}{ll}
I_{1 \times 1} & \\
& H_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
1 & \\
& H_{2}^{\prime}
\end{array}\right]
$$

$$
H_{2} H_{1} A=\left[\begin{array}{cc}
a_{11}^{\prime} & a_{12}^{\prime} \\
0 & a_{22}^{\prime \prime} \\
0 & 0
\end{array}\right]=R
$$

$$
\Longrightarrow Q=\left(H_{2} H_{1}\right)^{-1}=H_{1}^{-1} H_{2}^{-1} \stackrel{O R T H}{=} H_{1}^{T} H_{2}^{T} \stackrel{S Y M}{=} H_{1} H_{2}
$$

Full $Q R$ Factorization via Householder Reflectors

$$
\begin{aligned}
& \text { Let } A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \quad \Longrightarrow H_{1}=\left[\begin{array}{ll}
I_{0 \times 0} & \\
& H_{1}^{\prime}
\end{array}\right]=\left[H_{1}^{\prime}\right] \\
& \Longrightarrow \\
& \\
& \Longrightarrow \quad H_{1} A=\left[\begin{array}{cc}
a_{11}^{\prime} & a_{12}^{\prime} \\
0 & a_{22}^{\prime}
\end{array}\right] \quad=\quad R \\
& \Longrightarrow=\left(H_{1}\right)^{-1}=H_{1}^{-1} \stackrel{O R T H}{=} H_{1}^{T} \stackrel{S Y M}{=} H_{1}
\end{aligned}
$$

Full $Q R$ Factorization via Householder Reflectors

$$
\begin{aligned}
& \text { Let } A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right] \quad \Longrightarrow \quad H_{1}=\left[\begin{array}{ll}
I_{0 \times 0} & \\
& H_{1}^{\prime}
\end{array}\right]=\left[\begin{array}{l}
H_{1}^{\prime}
\end{array}\right] \\
& \Longrightarrow \quad H_{1} A=\left[\begin{array}{cc}
a_{11}^{\prime} & a_{12}^{\prime} \\
0 & a_{22}^{\prime} \\
0 & a_{32}^{\prime}
\end{array}\right] \quad \Longrightarrow H_{2}=\left[\begin{array}{ll}
I_{1 \times 1} & \\
& H_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
1 & \\
& H_{2}^{\prime}
\end{array}\right] \\
& \Longrightarrow H_{2} H_{1} A=\left[\begin{array}{cc}
a_{11}^{\prime} & a_{12}^{\prime} \\
0 & a_{22}^{\prime \prime} \\
0 & 0
\end{array}\right] \quad=R \\
& \Longrightarrow Q=\left(H_{2} H_{1}\right)^{-1}=H_{1}^{-1} H_{2}^{-1} \stackrel{O R T H}{=} H_{1}^{T} H_{2}^{T} \stackrel{\text { SYM }}{=} H_{1} H_{2}
\end{aligned}
$$

Full $Q R$ Factorization via Householder Reflectors

$$
\begin{aligned}
& \text { Let } \quad A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33} \\
a_{41} & a_{42} & a_{43}
\end{array}\right] \quad \Longrightarrow \quad H_{1}=\left[\begin{array}{ll}
I_{0 \times 0} & \\
& H_{1}^{\prime}
\end{array}\right]=\quad\left[H_{1}^{\prime}\right] \\
& \Longrightarrow \quad H_{1} A=\left[\begin{array}{ccc}
a_{11}^{\prime} & a_{12}^{\prime} & a_{13}^{\prime} \\
0 & a_{22}^{\prime} & a_{23}^{\prime} \\
0 & a_{32}^{\prime} & a_{33}^{\prime} \\
0 & a_{42}^{\prime} & a_{43}^{\prime}
\end{array}\right] \quad \Longrightarrow \quad H_{2}=\left[\begin{array}{ll}
I_{1 \times 1} & \\
& H_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
1 & \\
& H_{2}^{\prime}
\end{array}\right] \\
& \Longrightarrow \quad H_{2} H_{1} A=\left[\begin{array}{ccc}
a_{11}^{\prime} & a_{12}^{\prime} & a_{13}^{\prime} \\
0 & a_{22}^{\prime \prime} & a_{23}^{\prime \prime} \\
0 & 0 & a_{33}^{\prime \prime} \\
0 & 0 & a_{43}^{\prime \prime}
\end{array}\right] \quad \Longrightarrow \quad H_{3}=\left[\begin{array}{lll}
I_{2 \times 2} & \\
& H_{3}^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
1 & & \\
& 1 & \\
& & H_{3}^{\prime}
\end{array}\right] \\
& \Longrightarrow \quad H_{3} H_{2} H_{1} A=\left[\begin{array}{ccc}
a_{11}^{\prime} & a_{12}^{\prime} & a_{13}^{\prime} \\
0 & a_{22}^{\prime \prime} & a_{23}^{\prime \prime} \\
0 & 0 & a_{33}^{\prime \prime \prime} \\
0 & 0 & 0
\end{array}\right]=R \\
& \Longrightarrow Q=\left(H_{3} H_{2} H_{1}\right)^{-1}=H_{1}^{-1} H_{2}^{-1} H_{3}^{-1} \stackrel{O R T H}{=} H_{1}^{T} H_{2}^{T} H_{3}^{T} \stackrel{S Y M}{=} H_{1} H_{2} H_{3}
\end{aligned}
$$

Which Householder Reflector to Choose??

There are two Householder Reflectors to choose from:

$$
\begin{aligned}
& \mathbf{h}_{+}=\mathbf{a}_{1}^{(1)}-\overline{\operatorname{sign}}\left(a_{11}^{(1)}\right) \cdot\left\|\mathbf{a}_{1}^{(1)}\right\|_{2} \cdot \hat{\mathbf{e}}_{1} \\
& \mathbf{h}_{-}=\mathbf{a}_{1}^{(1)}+\overline{\operatorname{sign}}\left(a_{11}^{(1)}\right) \cdot\left\|\mathbf{a}_{1}^{(1)}\right\|_{2} \cdot \hat{\mathbf{e}}_{1}
\end{aligned}
$$

So, given the Householder Reflector expression containing a \pm symbol:

$$
\mathbf{h}_{1}=\mathbf{a}_{1}^{(1)} \pm \overline{\operatorname{sign}}\left(a_{11}^{(1)}\right) \cdot\left\|\mathbf{a}_{1}^{(1)}\right\|_{2} \cdot \hat{\mathbf{e}}_{1}
$$

...which sign should one choose??
Answer: It depends!
If computing Householder Reflectors by hand (using exact arithmetic), either + or - is fine, so pick one.

However, if computing Householder Reflectors via a computer, always pick the + (i.e. always pick \mathbf{h}_{-})
because the result will be more accurate.
S.J. Leon, Linear Algebra with Applications, $9^{\text {th }}$ Ed., Pearson, 2015.
A. Householder, "Unitary Triangularization of a Nonsymmetric Matrix", J. ACM, 5 (1958), 339-342.

Full QR Factorization via Householder Reflectors

Proposition

(Full QR Factorization via Householder Reflectors)

GIVEN: Tall or square $(m \geq n)$ full column rank matrix $A_{m \times n}$ with columns \mathbf{a}_{k}.
TASK: Factor $A=Q R$ where $Q_{m \times m}$ has orthonormal columns $\widehat{\mathbf{q}}_{k}$ and $R_{m \times n}$ is upper triangular.
(0) For each upcoming \pm : by computer, always pick + ; by hand, either + or - is fine, pick one.
(1) Build Householder Reflector, H_{1}, that nullifies sub-diagonal $1^{\text {st }}$ column of A :

$$
\begin{gathered}
\mathbf{a}_{1}^{(1)}:=\left(a_{11}, \cdots, a_{m 1}\right)^{T} \Longrightarrow \mathbf{h}_{1}=\mathbf{a}_{1}^{(1)} \pm \overline{\operatorname{sign}}\left(a_{11}^{(1)}\right) \cdot\left\|\mathbf{a}_{1}^{(1)}\right\|_{2} \cdot \hat{\mathbf{e}}_{1} \Longrightarrow \hat{\mathbf{h}}_{1}=\mathbf{h}_{1} /\left\|\mathbf{h}_{1}\right\|_{2} \\
\Longrightarrow H_{1}^{\prime}=I-2 \hat{\mathbf{h}}_{1} \hat{\mathbf{h}}_{1}^{T} \Longrightarrow H_{1}=\left[\begin{array}{cc}
I_{0 \times 0} & \\
& H_{1}^{\prime}
\end{array}\right]=H_{1}^{\prime}
\end{gathered}
$$

(2) For each $j=2, \cdots, n$:

Build Householder Reflector, H_{j}, that nullifies sub-diagonal $j^{\text {th }}$ column of $H_{j} H_{j-1} \cdots H_{2} H_{1} A:=C_{j}$:

$$
\begin{aligned}
\mathbf{c}_{1}^{(j)}:=\left(c_{i j}^{(j)}, \cdots, c_{m j}^{(j)}\right)^{T} & \Longrightarrow \mathbf{h}_{j}=\mathbf{c}_{1}^{(j)} \pm \overline{\operatorname{sign}}\left(c_{j j}^{(j)}\right) \cdot\left\|\mathbf{c}_{1}^{(j)}\right\|_{2} \cdot \hat{\mathbf{e}}_{1}
\end{aligned} \begin{gathered}
\Longrightarrow \hat{\mathbf{h}}_{j}=\mathbf{h}_{j} /\left\|\mathbf{h}_{j}\right\|_{2} \\
\Longrightarrow H_{j}^{\prime}=I-2 \hat{\mathbf{h}}_{j} \hat{\mathbf{h}}_{j}^{T} \Longrightarrow H_{j}=\left[\begin{array}{ll}
I_{(j-1) \times(j-1)} & \\
& H_{j}^{\prime}
\end{array}\right]
\end{gathered}
$$

(3) $R=H_{n} H_{n-1} \cdots H_{2} H_{1} A$
(4) $Q=H_{1} H_{2} \cdots H_{n-1} H_{n}$
S.J. Leon, Linear Algebra with Applications, $9^{\text {th }}$ Ed., Pearson, 2015.
A. Householder, "Unitary Triangularization of a Nonsymmetric Matrix", J. ACM, 5 (1958), 339-342.

Fin.

