MATH 2450-020: FINAL EXAM INFO/LOGISTICS/ADVICE

•	INFO:			

	LOCATION:	Tuesday $(12/09)$ at 10:30am in SCIENCE 007	DURATION:	2.5 hours					
	PROBLEM COUNT:	12 Multiple Choice + 4 Free-Response	BONUS COUNT:	(Likely None)					
	– <u>TOPICS CANDID</u>	$\underline{\text{ATE FOR THE EXAM:}} \qquad ("SST" = "Str$	auss, Smith & Toda"	(i.e. the textboo	ok))				
	* (All 'TOPICS CANDIDATE FOR THE EXAM's from Info/Logistics/Advice for EXAMS 1,2,3)								
	* SST 11.2: Cor	tinuity of Functions of Two Variables							
	* SST 13.1: Vec	tor Fields: Div, Curl: div $\vec{\mathbf{F}} = \nabla \cdot \vec{\mathbf{F}}$, curl $\vec{\mathbf{F}} =$	$ abla imes ec{\mathbf{F}}$						
	* SST 13.1: Sca	lar Fields: Gradient, Laplacian: grad $f = \nabla f$,	$\nabla^2 f = \operatorname{div}(\operatorname{grad} f)$	$= \nabla \cdot (\nabla f)$					
	* SST 13.2: Line	e Integrals in \mathbb{R}^2 & \mathbb{R}^3 : $\int_C f ds$, $\int_C f dx$, $\int_C f dx$	$ly, \int_C f dz, \int_{\Gamma} \vec{\mathbf{F}} \cdot$	$d\vec{\mathbf{R}}$					
	* SST 13.3: Gra	dient Fields, Scalar Potentials, FTLI, Path Indepe	endence	<i>,</i> , , , , , , , , , , , , , , , , , ,					
	* SST 13.4: Gre	en's Theorem for Simply-Connected Regions: \oint_C ($Mdx + Ndy) = \iint_D \left(\right.$	$\left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}\right) dA$					
	* SST 13.5: Sur	face Integrals, Flux Integrals: $\iint_S f dS$, $\iint_S \vec{\mathbf{F}}$	$\cdot \widehat{\mathbf{N}} dS$						
	* SST 13.6: Stol	kes' Theorem: $\oint_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{R}} = \iint_S \left(\nabla \times \vec{\mathbf{F}} \right) \cdot \hat{\mathbf{N}} dS$							
	* SST 13.7: Gau	iss' (Divergence) Theorem: $\oint_S \vec{\mathbf{F}} \cdot \hat{\mathbf{N}} dS = \iiint_E \nabla$	$7 \cdot \vec{\mathbf{F}} dV$						
	* REMARK: So	ome problems may require a sketch of a regi	on.						
	* REMARK: N	o formulas will be provided, so either memo	rize them or learn	how to derive	them.				
	– TOPICS CANDIDATE FOR BONUS QUESTIONS:								
	* (Likely None – turning in Bluebook early earns bonus points for FINAL EXAM)								
	– <u>TOPICS NOT COVERED AT ALL:</u>								
* (All 'TOPICS NOT COVERED AT ALL' sections from Info/Logistics/Advice for EXAMS 1,2,3)									
	* SST 13.4: Green's Theorem for Multiply-Connected Regions								
	* SST 13.4: Normal Derivatives: $\frac{\partial f}{\partial n} := \nabla f \cdot \vec{\mathbf{N}}$								
	* SST 13.5: Non-Orientable Surfaces such as the Möbius Strip & Klein Bottle $\vec{\tau}$								
	* SST 13.5: Parametric Surfaces (EXAMPLES 5 & 6, pages 1070-1071): $\mathbf{R}(u, v) = \cdots$								
	* SST 13.6: Physical Interpretation of Stokes' Theorem (page 1081)								
	* SST 13.7: Green's 1 st Identity (EXAMPLE 6, pages 1091-1092): $\iiint_E \left[f \nabla^2 g + \nabla f \cdot \nabla g \right] dV = \bigoplus_S f \frac{\partial g}{\partial n} dS$								
	* SST 13.7: Physical Interpretation of Gauss' (Divergence) Theorem (page 1092)								
	* 551 Ollis. (A	ny textbook examples & problems involving physic							
•	LOGISTICS:								
	- All you need to bri	ng are pencil(s), eraser(s), your Raidercard, & a ${\bf S}$	cantron.						
	– Get a TTU Scan	tron at the bookstore in the Student Union	Bldg – see info at	oove Course Ca	lendar.				
- Clear your desk of everything except pencil(s), eraser(s) & Scantron .									
	- Once desks are clea	ared, I'll hand out your BlueBook & Final Exam.							
	– Be sure to use a	#2 pencil to fully bubble-in answers on the	e Scantron.						
	– The first four pa	ges of Bluebook will be for the Free-Respor	nse Problems.						
	- The remaining pages of Bluebook are for <u>scratch work</u> for the <u>Multiple Choice Problems</u> .								
– The scratch work for the Multiple Choice will <u>not</u> be graded.									
	– Partial credit is possible for the Free-Response Problems, but <u>not</u> possible for the Multiple Choice.								
	- You either get a Multiple Choice Problem correct (earn all points) or incorrect (earn no points).								
	– Books, notes, notes	cards, calculators NOT PERMITTED.							
	– Mobile devices (ph	ones, tablets, PC's, music, \dots) are to be shut off an	nd put away.						

- Tissues will be furnished for allergies, not for sobbing. No talking or cheating!
- If you ask to use the restroom during the exam, either hold it or turn in your exam for grading.

• ADVICE:

- Use the restroom before the exam, if needed.
- Turn in a BlueBook early otherwise you won't start the final exam on time.
- You must show up for the final exam & turn in a BlueBook & Scantron....
 - *even if you choose not to take the final exam and your grades are good enough to still pass....
 - \ast otherwise you're guaranteed to receive an F in the course! (Departmental Policy)
- $-\,$ Review past homework & exams, and perhaps even work some similar problems in the textbook.
- $-\,$ Review relevant examples in the textbook.
- Use flashcards to aid in memorization of hard formulas.
- Study for the exam together in groups.
- SHOW APPROPRIATE WORK! Attempt bonus questions.