FUNCTIONS OF TWO VARIABLES: RELATIVE EXTREMA [SST 11.7]

• OPEN, CLOSED, AND BOUNDED SETS IN \mathbb{R}^2 :

- A set $S \subseteq \mathbb{R}^2$ is **open** if S contains none of its boundary.
- A set $S \subseteq \mathbb{R}^2$ is **closed** if S contains all of its boundary.
- $-\mathbb{R}^2$ and \emptyset (empty set) are **both open and closed**.
- **Open disk** centered at (x_0, y_0) with radius r > 0: $\mathbb{D}(x_0, y_0; r) := \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < r^2\}$
- Closed disk centered at (x_0, y_0) with radius r > 0: $\overline{\mathbb{D}}(x_0, y_0; r) := \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le r^2\}$
- A set $S \subset \mathbb{R}^2$ is **bounded** if S is contained in an open disk.

• SUFFICIENT CONDITION FOR EQUALITY OF MIXED 2nd-ORDER PARTIALS:

- Let $f(x,y) \in C^{(2,2)}$. Then $f_{xy} = f_{yx}$

• CRITICAL POINTS:

- Let f(x, y) be defined on an open set $S \subseteq \mathbb{R}^2$ such that $(x_0, y_0) \in S$.

Then (x_0, y_0) is a **critical point** of f is either one of the following is true:

- (i) $f_x(x_0, y_0) = 0$ and $f_y(x_0, y_0) = 0$
- (ii) At least one of $f_x(x_0, y_0)$ or $f_y(x_0, y_0)$ DNE

• RELATIVE MIN's, RELATIVE MAX's, SADDLE POINTS ("FIRST PRINCIPLES" DEFINITIONS):

- Let f(x,y) be defined on an open set $S \subseteq \mathbb{R}^2$ such that $(x_0,y_0) \in S$. Then:
 - (x_0, y_0) is a relative maximum if $f(x, y) \leq f(x_0, y_0) \quad \forall (x, y) \in \mathbb{D}(x_0, y_0; r).$
 - (x_0, y_0) is a relative minimum if $f(x, y) \ge f(x_0, y_0) \quad \forall (x, y) \in \mathbb{D}(x_0, y_0; r).$
 - (x_0, y_0) is a saddle point if $\exists (x_1, y_1), (x_2, y_2) \in \mathbb{D}(x_0, y_0; r)$ s.t. $f(x_1, y_1) > f(x_0, y_0)$ and $f(x_2, y_2) < f(x_0, y_0)$.

• RELATIVE MIN's, RELATIVE MAX's, SADDLE POINTS (2nd-ORDER PARTIALS TEST):

- Let
$$f(x,y) \in C^{(2,2)}\left(\mathbb{D}(x_0,y_0;r)\right)$$
 s.t. f has a critical point at (x_0,y_0) .
Form the **discriminant** of f : $\Delta(x,y) := \det \begin{bmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{bmatrix} = f_{xx}f_{yy} - (f_{xy})^2$
Then:
 (x_0,y_0) is a **relative max** if $\left(\Delta(x_0,y_0) > 0 \text{ and } f_{xx}(x_0,y_0) < 0\right)$ OR $\left(\Delta(x_0,y_0) > 0 \text{ and } f_{xx}(x_0,y_0) < 0\right)$

 $(x_0, y_0) \text{ is a relative max if } \left(\Delta(x_0, y_0) > 0 \text{ and } f_{xx}(x_0, y_0) < 0 \right) \text{ OR } \left(\Delta(x_0, y_0) > 0 \text{ and } f_{yy}(x_0, y_0) < 0 \right)$ $(x_0, y_0) \text{ is a relative min if } \left(\Delta(x_0, y_0) > 0 \text{ and } f_{xx}(x_0, y_0) > 0 \right) \text{ OR } \left(\Delta(x_0, y_0) > 0 \text{ and } f_{yy}(x_0, y_0) > 0 \right)$

 (x_0, y_0) is a saddle point if $\Delta(x_0, y_0) < 0$

The test is **inconclusive** if $\Delta(x_0, y_0) = 0$. So, apply the "**First Principles**" definitions of rel min, rel max, and saddle point. (see above) **EX 11.7.3:** Let $h(x, y) = x^6 + y^8$. Find & classify all critical points (CP's) of h.

<u>STEP 1:</u> Compute the 1^{st} -order partials of h:

$$\begin{cases} h_x = \frac{\partial}{\partial x} \left[x^6 + y^8 \right] = 6x^5 \\ h_y = \frac{\partial}{\partial y} \left[x^6 + y^8 \right] = 8y^7 \end{cases}$$

<u>STEP 2:</u> Set the 1^{st} -order partials equal to zero & solve the resulting **nonlinear** system:

$$\begin{cases} h_x \stackrel{set}{=} 0\\ h_y \stackrel{set}{=} 0 \end{cases} \implies \begin{cases} 6x^5 = 0\\ 8y^7 = 0 \end{cases} \implies \begin{cases} x = 0\\ y = 0 \end{cases} \implies \text{The only CP of } h \text{ is } (0,0) \end{cases}$$

<u>STEP 3:</u> Compute the 2^{nd} -order partials of h:

$$h_{xx} = \frac{\partial}{\partial x} \left[h_x \right] = \frac{\partial}{\partial x} \left[6x^5 \right] = 30x^4$$
$$h_{yy} = \frac{\partial}{\partial y} \left[h_y \right] = \frac{\partial}{\partial y} \left[8y^7 \right] = 56y^6$$
$$h_{xy} = (h_x)_y = \frac{\partial}{\partial y} \left[h_x \right] = \frac{\partial}{\partial y} \left[6x^5 \right] = 0$$

<u>STEP 4:</u> Compute the **discriminant**, $\Delta(x, y)$:

-

$$\Delta(x,y) = \det \begin{bmatrix} h_{xx} & h_{xy} \\ h_{xy} & h_{yy} \end{bmatrix} = h_{xx}h_{yy} - (h_{xy})^2 = (30x^4)(56y^6) - (0)^2 = (30)(56)x^4y^6$$

Now, the value of the discriminant at the CP (0,0) is $\Delta(0,0) = (30)(56)(0)^5(0)^6 = 0$

Since the disciminant at the CP is zero, the 2^{nd} -Order Partials Test is inconclusive!! :(

Therefore, further analysis is needed by appealing to the "First Principles" definitions of rel max, rel min & saddle point:

Observe that h(x, y) = 0 only at (x, y) = (0, 0).

Elsewhere, h(x, y) > 0 since h is a **sum** of **even powers** of x & y.

Let $\mathbb{D}(0,0;r)$ be an **open disk** centered at CP (0,0) with radius r > 0.

Then, $h(x,y) \ge h(0,0) \quad \forall (x,y) \in \mathbb{D}(0,0;r)$

Therefore, by the "First Principles" definition, (0,0) is a **relative minimum**.