FUNCTIONS OF TWO VARIABLES: RELATIVE EXTREMA [SST 11.7]

- OPEN, CLOSED, AND BOUNDED SETS IN \mathbb{R}^{2} :
- A set $S \subseteq \mathbb{R}^{2}$ is open if S contains none of its boundary.
- A set $S \subseteq \mathbb{R}^{2}$ is closed if S contains all of its boundary.
$-\mathbb{R}^{2}$ and \emptyset (empty set) are both open and closed.
- Open disk centered at (x_{0}, y_{0}) with radius $r>0$:

$$
\mathbb{D}\left(x_{0}, y_{0} ; r\right):=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<r^{2}\right\}
$$

- Closed disk centered at $\left(x_{0}, y_{0}\right)$ with radius $r>0: \quad \overline{\mathbb{D}}\left(x_{0}, y_{0} ; r\right):=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq r^{2}\right\}$
- A set $S \subset \mathbb{R}^{2}$ is bounded if S is contained in an open disk.
- SUFFICIENT CONDITION FOR EQUALITY OF MIXED $2^{n d}$-ORDER PARTIALS:
- Let $f(x, y) \in C^{(2,2)} . \quad$ Then $f_{x y}=f_{y x}$
- CRITICAL POINTS:
- Let $f(x, y)$ be defined on an open set $S \subseteq \mathbb{R}^{2}$ such that $\left(x_{0}, y_{0}\right) \in S$.

Then $\left(x_{0}, y_{0}\right)$ is a critical point of f is either one of the following is true:
(i) $f_{x}\left(x_{0}, y_{0}\right)=0 \quad$ and $\quad f_{y}\left(x_{0}, y_{0}\right)=0$
(ii) At least one of $f_{x}\left(x_{0}, y_{0}\right)$ or $f_{y}\left(x_{0}, y_{0}\right)$ DNE

- RELATIVE MIN's, RELATIVE MAX's, SADDLE POINTS ("FIRST PRINCIPLES" DEFINITIONS):
- Let $f(x, y)$ be defined on an open set $S \subseteq \mathbb{R}^{2}$ such that $\left(x_{0}, y_{0}\right) \in S$. Then:
$\left(x_{0}, y_{0}\right)$ is a relative maximum if $f(x, y) \leq f\left(x_{0}, y_{0}\right) \quad \forall(x, y) \in \mathbb{D}\left(x_{0}, y_{0} ; r\right)$.
$\left(x_{0}, y_{0}\right)$ is a relative minimum if $f(x, y) \geq f\left(x_{0}, y_{0}\right) \quad \forall(x, y) \in \mathbb{D}\left(x_{0}, y_{0} ; r\right)$.
$\left(x_{0}, y_{0}\right)$ is a saddle point if $\exists\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{D}\left(x_{0}, y_{0} ; r\right)$ s.t. $f\left(x_{1}, y_{1}\right)>f\left(x_{0}, y_{0}\right)$ and $f\left(x_{2}, y_{2}\right)<f\left(x_{0}, y_{0}\right)$.
- RELATIVE MIN's, RELATIVE MAX's, SADDLE POINTS (2 $2^{n d}$-ORDER PARTIALS TEST):
- Let $f(x, y) \in C^{(2,2)}\left(\mathbb{D}\left(x_{0}, y_{0} ; r\right)\right)$ s.t. f has a critical point at $\left(x_{0}, y_{0}\right)$.

Form the discriminant of $f: \quad \Delta(x, y):=\operatorname{det}\left[\begin{array}{cc}f_{x x} & f_{x y} \\ f_{x y} & f_{y y}\end{array}\right]=f_{x x} f_{y y}-\left(f_{x y}\right)^{2}$
Then:
$\left(x_{0}, y_{0}\right)$ is a relative max if $\left(\Delta\left(x_{0}, y_{0}\right)>0\right.$ and $\left.f_{x x}\left(x_{0}, y_{0}\right)<0\right)$ OR $\left(\Delta\left(x_{0}, y_{0}\right)>0\right.$ and $\left.f_{y y}\left(x_{0}, y_{0}\right)<0\right)$
$\left(x_{0}, y_{0}\right)$ is a relative min if $\left(\Delta\left(x_{0}, y_{0}\right)>0\right.$ and $\left.f_{x x}\left(x_{0}, y_{0}\right)>0\right) \quad$ OR $\left(\Delta\left(x_{0}, y_{0}\right)>0\right.$ and $\left.f_{y y}\left(x_{0}, y_{0}\right)>0\right)$
$\left(x_{0}, y_{0}\right)$ is a saddle point if $\Delta\left(x_{0}, y_{0}\right)<0$
The test is inconclusive if $\Delta\left(x_{0}, y_{0}\right)=0$.
So, apply the "First Principles" definitions of rel min, rel max, and saddle point. (see above)

STEP 1: Compute the $1^{\text {st }}$-order partials of h :
$\left\{\begin{array}{l}h_{x}=\frac{\partial}{\partial x}\left[x^{6}+y^{8}\right]=6 x^{5} \\ h_{y}=\frac{\partial}{\partial y}\left[x^{6}+y^{8}\right]=8 y^{7}\end{array}\right.$

STEP 2: Set the $1^{\text {st }}$-order partials equal to zero $\&$ solve the resulting nonlinear system:
$\left\{\begin{array}{l}h_{x} \stackrel{\text { set }}{=} 0 \\ h_{y} \stackrel{\text { set }}{=} 0\end{array} \Longrightarrow\left\{\begin{array}{l}6 x^{5}=0 \\ 8 y^{7}=0\end{array} \Longrightarrow\left\{\begin{array}{l}x=0 \\ y=0\end{array} \Longrightarrow\right.\right.\right.$ The only CP of h is $(0,0)$

STEP 3: Compute the $2^{\text {nd }}$-order partials of h :
$h_{x x}=\frac{\partial}{\partial x}\left[h_{x}\right]=\frac{\partial}{\partial x}\left[6 x^{5}\right]=30 x^{4}$
$h_{y y}=\frac{\partial}{\partial y}\left[h_{y}\right]=\frac{\partial}{\partial y}\left[8 y^{7}\right]=56 y^{6}$
$h_{x y}=\left(h_{x}\right)_{y}=\frac{\partial}{\partial y}\left[h_{x}\right]=\frac{\partial}{\partial y}\left[6 x^{5}\right]=0$

STEP 4: Compute the discriminant, $\Delta(x, y)$:
$\Delta(x, y)=\operatorname{det}\left[\begin{array}{ll}h_{x x} & h_{x y} \\ h_{x y} & h_{y y}\end{array}\right]=h_{x x} h_{y y}-\left(h_{x y}\right)^{2}=\left(30 x^{4}\right)\left(56 y^{6}\right)-(0)^{2}=(30)(56) x^{4} y^{6}$

Now, the value of the discriminant at the CP $(0,0)$ is $\quad \Delta(0,0)=(30)(56)(0)^{5}(0)^{6}=0$
Since the disciminant at the CP is zero, the $2^{\text {nd }}$-Order Partials Test is inconclusive!! :(
Therefore, further analysis is needed by appealing to the "First Principles" definitions of rel max, rel min \& saddle point:
Observe that $h(x, y)=0$ only at $(x, y)=(0,0)$.
Elsewhere, $h(x, y)>0$ since h is a sum of even powers of $x \& y$.
Let $\mathbb{D}(0,0 ; r)$ be an open disk centered at $\mathrm{CP}(0,0)$ with radius $r>0$.
Then, $h(x, y) \geq h(0,0) \quad \forall(x, y) \in \mathbb{D}(0,0 ; r)$
Therefore, by the "First Principles" definition, $(0,0)$ is a relative minimum.

