EX 12.2.5: Setup double integral(s) for the volume of the solid E below surface $z=6-2 x^{2}-3 y^{2}$ and above plane $z=0$.
For clarity, let $f(x, y)=6-2 x^{2}-3 y^{2}$
In order to determine region D, intersect the surface $z=f(x, y)$ with the plane $z=0$ by equating their RHS's:
$6-2 x^{2}-3 y^{2}=0 \Longrightarrow 2 x^{2}+3 y^{2}=6 \Longrightarrow \frac{x^{2}}{3}+\frac{y^{2}}{2}=1 \Longrightarrow \frac{x^{2}}{(\sqrt{3})^{2}}+\frac{y^{2}}{(\sqrt{2})^{2}}=1 \quad \leftarrow$ Ellipse with axial radii $\sqrt{3}, \sqrt{2}$
Hence, the ellipse $\frac{x^{2}}{3}+\frac{y^{2}}{2}=1$ is the only BC of region D.
Notice that $f(x, y)>0$ inside this ellipse: $\quad\left[\right.$ e.g. $f(0,0)=6-2(0)^{2}-3(0)^{2}=6>0$]
Thus, region D (which is the bottom face of solid E) is the closed elliptic disk: $\quad \frac{x^{2}}{3}+\frac{y^{2}}{2} \leq 1$

SUPPOSE THE INTEGRATION ORDER $d y d x$ IS DESIRED:

Solve the elliptic BC for y : $\quad \frac{x^{2}}{3}+\frac{y^{2}}{2}=1 \Longrightarrow y= \pm \sqrt{2-\frac{2}{3} x^{2}}$
Label the two BP's whose y-coord is zero, meaning they separate the ellipse into two BC's:

Therefore, $\operatorname{Volume}(E)=\iint_{D} f d A=\int_{\text {Smallest } x \text {-coord }}^{\text {Largest } x \text {-coord }} \int_{\text {Btm BC }}^{\text {Top BC }} f(x, y) d y d x=\int_{-\sqrt{3}}^{\sqrt{3}} \int_{-\sqrt{2-\frac{2}{3} x^{2}}}^{\sqrt{2-\frac{2}{3} x^{2}}}\left(6-2 x^{2}-3 y^{2}\right) d y d x$

SUPPOSE THE INTEGRATION ORDER $d x d y$ IS DESIRED:

Solve the elliptic BC for x :

$$
\frac{x^{2}}{3}+\frac{y^{2}}{2}=1 \Longrightarrow x= \pm \sqrt{3-\frac{3}{2} y^{2}}
$$

Label the two BP's whose x-coord is zero, meaning they separate the ellipse into two BC's:

Therefore, $\operatorname{Volume}(E)=\iint_{D} f d A=\int_{\text {Smallest } y \text {-coord }}^{\text {Largest } y \text {-coord }} \int_{\text {Left BC }}^{\text {Right BC }} f(x, y) d x d y=\int_{-\sqrt{2}}^{\sqrt{2}} \int_{-\sqrt{3-\frac{3}{2} y^{2}}}^{\sqrt{3-\frac{3}{2} y^{2}}}\left(6-2 x^{2}-3 y^{2}\right) d x d y$

EX 12.2.6: Setup double integral(s) for the volume of solid E bounded by the planes $x=0, y=0, z=0$ and $z=7-3 x-2 y$.
Trivially, the intersection of the $y z$-plane $(x=0) \& x y$-plane $(z=0)$ is the y-axis $(x=0)$.
Trivially, the intersection of the $x z$-plane $(y=0) \& x y$-plane $(z=0)$ is the x-axis $(y=0)$.
Let $f(x, y)=7-3 x-2 y$ and intersect the plane $z=f(x, y)$ with the $x y$-plane $(z=0)$:
$f(x, y)=0 \Longrightarrow 7-3 x-2 y=0 \Longrightarrow y=\frac{7}{2}-\frac{3}{2} x \quad \leftarrow$ slanted line with y-intercept $\frac{7}{2}$
Hence, the lines $x=0, y=0$, and $y=\frac{7}{2}-\frac{3}{2} x$ are the three BC's of region D.
Moreover, the three lines form a triangle.
Notice that $f(x, y)>0$ inside this triangle: $\quad[$ e.g. $f(1,1)=7-3(1)-2(1)=2>0$]
Thus, region D (which is the bottom face of solid E) is the resulting closed triangle.

Sketch region D

Notice that region D is both V-Simple \& H-Simple, meaning either integration order will yield only one double integral.

SUPPOSE THE INTEGRATION ORDER $d y d x$ IS DESIRED:

Then, $\operatorname{Volume}(E)=\iint_{D} f d A=\int_{\text {Smallest } x \text {-coord }}^{\text {Largest } x \text {-coord }} \int_{\text {Btm BC }}^{\text {Top BC }} f(x, y) d y d x=\int_{0}^{\frac{7}{3}} \int_{0}^{\frac{7}{2}-\frac{3}{2} x}(7-3 x-2 y) d y d x$

SUPPOSE THE INTEGRATION ORDER $d x d y$ IS DESIRED:

Then, $\operatorname{Volume}(E)=\iint_{D} f d A=\int_{\text {Smallest } y \text {-coord }}^{\text {Largest } y \text {-coord }} \int_{\text {Left BC }}^{\text {Right BC }} f(x, y) d x d y=\int_{0}^{\frac{7}{2}} \int_{0}^{\frac{7}{3}-\frac{2}{3} y}(7-3 x-2 y) d x d y$

