EX 12.2.8: Let $I=\int_{0}^{3} \int_{y / 3}^{\sqrt{4-y}} f(x, y) d x d y$.
Sketch the region of integration \& write an equivalent iterated double integral with the order of integration reversed.
Since the given order is $d x d y$, the right BC is $x=y / 3 \Longleftrightarrow y=3 x \quad \& \quad$ the left BC is $x=\sqrt{4-y} \Longleftrightarrow y=4-x^{2}$.
Moreover, the smallest y-coord in the region is 0 \& the largest y-coord in the region is 3 .
Using this info, sketch the BC's of the region of integration \& shade the region itself:

Now, find the three BP's of region D :
Intersect line $x=\frac{y}{3}$ with x-axis $y=0: \quad y=0 \Longrightarrow x=\frac{(0)}{3}=0 \Longrightarrow \mathrm{BP}$ is $(0,0)$
Intersect parabola $x=\sqrt{4-y}$ with x-axis $y=0: \quad y=0 \Longrightarrow x=\sqrt{4-(0)}=\sqrt{4}=2 \Longrightarrow \mathrm{BP}$ is $(2,0)$
Intersect parabola $y=4-x^{2}$ with line $y=3 x$:

$$
4-x^{2}=3 x \Longrightarrow x^{2}+3 x-4=0 \Longrightarrow(x+4)(x-1)=0 \Longrightarrow x=1, x=-4
$$

Since region D is in Quadrant I $(x, y>0)$, discard $x=-4 . \quad$ So, $x=1 \Longrightarrow y=3(1)=3 \Longrightarrow$ BP is $(1,3)$
Re-sketch region D larger in size and without the clutter, writing BC's only in terms of x since the $d y d x$ order is desired:

Notice that region D is not V-simple, so subdivide vertically along BP $(1,3)$ into two subregions $D_{1} \& D_{2}$.

$$
\begin{aligned}
& \iint_{D_{1}} f d A=\int_{\text {Smallest } x \text {-coord in } D_{1}}^{\text {Largest } x \text {-coord in } D_{1}} \int_{\text {Btm BC in } D_{1}}^{\mathrm{Top} \text { BC in } D_{1}} f(x, y) d y d x=\int_{0}^{1} \int_{0}^{3 x} f(x, y) d y d x \\
& \iint_{D_{2}} f d A=\int_{\text {Smallest } x \text {-coord in } D_{2}}^{\text {Largest } x \text {-coord in } D_{2}} \int_{\text {Btm BC in } D_{2}}^{\text {Top BC in } D_{2}} f(x, y) d y d x=\int_{1}^{2} \int_{0}^{4-x^{2}} f(x, y) d y d x
\end{aligned}
$$

Therefore, $I=\iint_{D} f d A=\iint_{D_{1}} f d A+\iint_{D_{2}} f d A=\int_{0}^{1} \int_{0}^{3 x} f(x, y) d y d x+\int_{1}^{2} \int_{0}^{4-x^{2}} f(x, y) d y d x$

