EX 12.3.8: Using double integral(s), find the volume of the solid E bounded by the paraboloid $z=4-x^{2}-y^{2}$ and $x y$-plane.
For clarity, let $f(x, y)=4-x^{2}-y^{2}$

Find where paraboloid $z=f(x, y)$ intersects the $x y$-plane $(z=0)$:
$f(x, y)=0 \Longrightarrow 4-x^{2}-y^{2}=0 \Longrightarrow x^{2}+y^{2}=4 \leftarrow$ circle of radius 2 centered at $(0,0)$
Hence, the circle $x^{2}+y^{2}=4$ is the only BC of region D
Notice that $f(x, y)>0$ inside this circle: $\quad\left[\right.$ e.g. $f(-1,1)=4-(-1)^{2}-(1)^{2}=2>0$]
Thus, region D (which is the bottom face of solid E) is the closed disk of radius 2: $\quad x^{2}+y^{2} \leq 4$
Sketch region D, label the BC \& BP's (in rectangular coordinates):

$\therefore \quad$ Volume $(E)=\iint_{D} f d A=\underbrace{\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}}\left(4-x^{2}-y^{2}\right) d y d x}_{\text {Too tedious to compute! }}$
Instead, sketch D, label the pole \& the BC in polar coordinates:

$\therefore \operatorname{Volume}(E)=\iint_{D} f d A$

$$
\stackrel{P O L A R}{=} \iint_{D} f(r \cos \theta, r \sin \theta) r d r d \theta
$$

$=\quad \int_{\text {Smallest } \theta \text {-value in } D}^{\text {Largest } \theta \text {-value in } D} \int_{\text {Pole }}^{\text {Outer BC of } D}\left(4-r^{2}\right) r d r d \theta$
$=\int_{0}^{2 \pi} \int_{0}^{2}\left(4 r-r^{3}\right) d r d \theta$
$=\int_{0}^{2 \pi}\left[2 r^{2}-\frac{1}{4} r^{4}\right]_{r=0}^{r=2} d \theta$
$\stackrel{F T C}{=} \quad \int_{0}^{2 \pi}\left[\left(2(2)^{2}-\frac{1}{4}(2)^{4}\right)-\left(2(0)^{2}-\frac{1}{4}(0)^{4}\right)\right] d \theta$
$=\int_{0}^{2 \pi} 4 d \theta$
$=[4 \theta]_{\theta=0}^{\theta=2 \pi}$
$\stackrel{F T C}{=} \quad[4(2 \pi)-4(0)]=8 \pi$
© 2013 Josh Engwer - Revised October 21, 2014

