EX 12.5.6: | Using a triple integral, find the volume of the solid E bounded above by the surface 2 +y* + 2® = 9 and below
by the plane z = 0.

1%: Intersect surface (z® + y* + 2* = 9) with plane (z = 0) by plugging the plane (which is simpler) into the surface

and rewriting the resulting equation as the canonical form of the appropriate conic section or line:

2=0 = 2> +y* +(0)> =9 = 2® +y*> = 9 < Circle centered at (0,0) with radius 3

2"d: Project solid E onto the zy-plane, resulting in region D:

The circle 22 + y? = 9 is a BC of region D.

Pick a (simple) point inside this circle, say (z,y) = (—1,0).

Plug chosen point into the surface (2% + y* + 2* = 9) & find the corresponding z-coordinate:
(1) 4+ (00 +2°=9 = 14+2°=9 = 2°=8 = 2=2>0

Therefore, the surface (2 + y* + 2° = 9) lies above the zy-plane (z = 0) for z +y* < 9.

Hence, the projection of the solid E onto the zy-plane is D = {(z,y) € R? : 2% + y*> < 9}

Observe that region D is the closed (circular) disk centered at (0,0) with radius 3.

Since region D is a disk, use polar coordinates going forward.

374 Sketch the region D on the zy-plane, labeling BC’s & BP’s (in polar form) as appropriate:

Notice region D is radially simple (r-simple), treating the pole (r = 0) as the inner BC.

4*h: Setup & compute triple integral for the volume of solid E:
Since solid E is z-simple, expect only one triple integral.

Since region D is r-simple, expect only one double integral afterwards.
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