EX 12.5.6: Using a triple integral, find the volume of the solid E bounded above by the surface $x^{2}+y^{2}+z^{3}=9$ and below by the plane $z=0$.
$1^{\text {st }}$: Intersect surface $\left(x^{2}+y^{2}+z^{3}=9\right)$ with plane $(z=0)$ by plugging the plane (which is simpler) into the surface and rewriting the resulting equation as the canonical form of the appropriate conic section or line:
$z=0 \Longrightarrow x^{2}+y^{2}+(0)^{3}=9 \Longrightarrow x^{2}+y^{2}=9 \longleftarrow$ Circle centered at $(0,0)$ with radius 3
$2^{\text {nd }}$: Project solid E onto the $x y$-plane, resulting in region D :
The circle $x^{2}+y^{2}=9$ is a BC of region D.
Pick a (simple) point inside this circle, say $(x, y)=(-1,0)$.
Plug chosen point into the surface $\left(x^{2}+y^{2}+z^{3}=9\right) \&$ find the corresponding z-coordinate:

$$
(-1)^{2}+(0)^{2}+z^{3}=9 \Longrightarrow 1+z^{3}=9 \Longrightarrow z^{3}=8 \Longrightarrow z=2>0
$$

Therefore, the surface $\left(x^{2}+y^{2}+z^{3}=9\right)$ lies above the $x y$-plane $(z=0)$ for $x^{2}+y^{2}<9$.
Hence, the projection of the solid E onto the $x y$-plane is $D=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 9\right\}$
Observe that region D is the closed (circular) disk centered at $(0,0)$ with radius 3 .
Since region D is a disk, use polar coordinates going forward.

$3^{r d}$: Sketch the region D on the $x y$-plane, labeling BC's \& BP's (in polar form) as appropriate:
Notice region D is radially simple (r-simple), treating the pole $(r=0$) as the inner BC.
$4^{\text {th }}$: Setup \& compute triple integral for the volume of solid E :
Since solid E is z-simple, expect only one triple integral.
Since region D is r-simple, expect only one double integral afterwards.

$$
\begin{aligned}
\text { Volume }(E) \quad & \iiint_{E} d V=\iint_{D} \int_{\text {Btm BS of } E}^{\text {Top BS of } E} d z d A=\iint_{D} \int_{0}^{\sqrt[3]{9-x^{2}-y^{2}}} d z d A \\
= & \iint_{D}[z]_{z=0}^{z=\sqrt[3]{9-x^{2}-y^{2}}} d A \stackrel{F T C}{=} \iint_{D}\left[\sqrt[3]{9-x^{2}-y^{2}}-0\right] d A=\iint_{D} \sqrt[3]{9-x^{2}-y^{2}} d A \\
& \begin{aligned}
P O L A R & \int_{\text {Smallest } \theta \text {-value in } D}^{\text {Largest } \theta \text {-value in } D} \int_{\text {Pole }}^{\text {Outer BC of } D} \sqrt[3]{9-r^{2}} r d r d \theta=\int_{0}^{2 \pi} \int_{0}^{3} \sqrt[3]{9-r^{2}} r d r d \theta \\
& C V: \text { Let } u=9-r^{2} \Longrightarrow\left[d u=-2 r d r \Longleftrightarrow r d r=-\frac{1}{2} d u\right] \Longrightarrow u(3)=0 \text { and } u(0)=9 \\
\stackrel{C V}{=} & \int_{0}^{2 \pi} \int_{9}^{0} \sqrt[3]{u}\left(-\frac{1}{2} d u\right) d \theta=\frac{1}{2} \int_{0}^{2 \pi} \int_{0}^{9} u^{1 / 3} d u d \theta=\frac{1}{2} \int_{9}^{2 \pi}\left[\frac{3}{4} u^{4 / 3}\right]_{u=0}^{u=9} d \theta \stackrel{F T C}{=} \frac{1}{2} \int_{0}^{2 \pi}\left[\frac{3}{4}(9)^{4 / 3}-0\right] d \theta \\
= & \left(\frac{1}{2}\right)\left(\frac{3}{4}\right)\left(9^{4 / 3}\right) \int_{0}^{2 \pi} d \theta=\frac{3}{8}\left(9^{4 / 3}\right)[\theta]_{\theta=0}^{\theta=2 \pi} \frac{F T C}{=} \frac{3}{8}\left(9^{4 / 3}\right)(2 \pi-0) \\
= & \frac{3 \pi}{4}\left(9^{4 / 3}\right) \approx 44.1097
\end{aligned}
\end{aligned}
$$

