
EX 12.7.3: Using cylindrical coordinates, compute I =

∫∫∫
E

dV , where E is the solid bounded above by plane z = 3 &

below by paraboloid 2z = x2 + y2.

1st, intersect the plane (z = 3) with the paraboloid (2z = x2 + y2) by plugging the plane into the paraboloid

and rewriting the resulting equation as the canonical form of the appropriate conic section or line:

2(3) = x2 + y2 =⇒ x2 + y2 = 6←− Circle centered at (0,0) with radius
√
6

2nd, write the top & bottom boundary surfaces of solid E in cylindrical form:

Use conversion {x = r cos θ, y = r sin θ, z = z} and write surfaces as z = f(r, θ, z):

The plane z = 3 is already in cylindrical form.

The paraboloid 2z = x2 + y2 =⇒ 2z = (r cos θ)2 + (r sin θ)2 =⇒ 2z = r2 =⇒ z = 1
2
r2 in cylindrical form

3rd, although not required (and will not be graded on exams), it’s recommended to sketch solid E in xyz-space.

But, it is required (and will be graded on exams) to sketch the projection of E onto the xy-plane, AKA region D.

Of course, since cylindrical coordinates will be used, express any BC’s of region D in polar form:

x2 + y2 = 6 ⇐⇒ r = 6 in polar form

4th, setup & compute the iterated triple integral in cylindrical coordinates:
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