EX 12.7.3: Using cylindrical coordinates, compute $I=\iiint_{E} d V$, where E is the solid bounded above by plane $z=3 \&$ below by paraboloid $2 z=x^{2}+y^{2}$.
$1^{\text {st }}$, intersect the plane $(z=3)$ with the paraboloid $\left(2 z=x^{2}+y^{2}\right)$ by plugging the plane into the paraboloid and rewriting the resulting equation as the canonical form of the appropriate conic section or line:

$$
2(3)=x^{2}+y^{2} \Longrightarrow x^{2}+y^{2}=6 \longleftarrow \text { Circle centered at }(0,0) \text { with radius } \sqrt{6}
$$

$2^{\text {nd }}$, write the top \& bottom boundary surfaces of solid E in cylindrical form:
Use conversion $\{x=r \cos \theta, y=r \sin \theta, z=z\}$ and write surfaces as $z=f(r, \theta, z)$:
The plane $z=3$ is already in cylindrical form.
The paraboloid $2 z=x^{2}+y^{2} \Longrightarrow 2 z=(r \cos \theta)^{2}+(r \sin \theta)^{2} \Longrightarrow 2 z=r^{2} \Longrightarrow z=\frac{1}{2} r^{2}$ in cylindrical form
$3^{r d}$, although not required (and will not be graded on exams), it's recommended to sketch solid E in $x y z$-space. But, it is required (and will be graded on exams) to sketch the projection of E onto the $x y$-plane, AKA region D.

Of course, since cylindrical coordinates will be used, express any BC's of region D in polar form:

$$
x^{2}+y^{2}=6 \Longleftrightarrow r=6 \text { in polar form }
$$

$4^{\text {th }}$, setup \& compute the iterated triple integral in cylindrical coordinates:

$$
\begin{aligned}
I & =\iiint_{E} d V \\
& \stackrel{C Y}{=} L \int_{\text {Smallest } \theta \text {-value in } D}^{\text {Largest } \theta \text {-value in } D} \int_{\text {Pole }}^{\text {Outer BC in } D} \int_{\text {Btm BS of } E \text { (in cyl. form) }}^{\text {Top BS of } E \text { (in cyl. form) }} r d z d r d \theta=\int_{0}^{2 \pi} \int_{0}^{\sqrt{6}} \int_{\frac{1}{2} r^{2}}^{3} r d z d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{\sqrt{6}}[r z]_{z=\frac{1}{2} r^{2}}^{z=3} d r d \theta \stackrel{F \stackrel{T}{=}}{=} \int_{0}^{2 \pi} \int_{0}^{\sqrt{6}}\left[r(3)-r\left(\frac{1}{2} r^{2}\right)\right] d r d \theta=\int_{0}^{2 \pi} \int_{0}^{\sqrt{6}}\left(3 r-\frac{1}{2} r^{3}\right) d r d \theta \\
& =\int_{0}^{2 \pi}\left[\frac{3}{2} r^{2}-\frac{1}{8} r^{4}\right]_{r=0}^{r=\sqrt{6}} d \theta \stackrel{F}{\underline{T} C} \int_{0}^{2 \pi}\left[\left[\frac{3}{2}(\sqrt{6})^{2}-\frac{1}{8}(\sqrt{6})^{4}\right]-\left[\frac{3}{2}(0)^{2}-\frac{1}{8}(0)^{4}\right]\right] d \theta=\int_{0}^{2 \pi}\left[\left(9-\frac{9}{2}\right)-(0-0)\right] d \theta \\
& =\int_{0}^{2 \pi} \frac{9}{2} d \theta=\left[\frac{9}{2} \theta\right]_{\theta=0}^{\theta=2 \pi} \stackrel{F T}{=} \frac{9}{2}(2 \pi)-\frac{9}{2}(0)=9 \pi-0=9 \pi
\end{aligned}
$$

