EX 12.7.5: Using spherical coordinates, compute $I=\iiint_{E} z d V$, where E is the solid bounded above by plane $z=3 \&$ below by the half-cone $z=\sqrt{x^{2}+y^{2}}$.
$1^{\text {st }}$, although not required (and will not be graded on exams), it's recommended to sketch solid E in $x y z$-space. Sketch \& label the plane \& half-cone in spherical coordinates:

$2^{\text {nd }}$, using "interpretive dance" [as demonstrated in class on $10 / 28$ (Tues)] or otherwise, determine the limits of integration:

$$
\begin{aligned}
& I \quad \iiint_{E} z d V \\
& \quad \stackrel{S P H}{=} \int_{\text {Smallest } \theta \text {-value in } E}^{\text {Largest } \theta \text {-value in } E} \int_{\text {Smallest } \phi \text {-value in } E}^{\text {Largest } \phi \text {-value in } E} \int_{\text {Inner BS of } E}^{\text {Outer BS of } E}(\rho \cos \phi)\left(\rho^{2} \sin \phi d \rho d \phi d \theta\right) \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{0}^{3 \sec \phi} \rho^{3} \cos \phi \sin \phi d \rho d \phi d \theta=\int_{0}^{2 \pi} \int_{0}^{\pi / 4}\left[\frac{1}{4} \rho^{4} \cos \phi \sin \phi\right]_{\rho=0}^{\rho=3 \sec \phi} d \phi d \theta \\
& \stackrel{F T C}{=} \int_{0}^{2 \pi} \int_{0}^{\pi / 4}\left[\frac{1}{4}(3 \sec \phi)^{4} \cos \phi \sin \phi-\frac{1}{4}(0)^{4} \cos \phi \sin \phi\right] d \phi d \theta=\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \frac{81}{4} \sec ^{3} \phi \sin \phi d \phi d \theta \\
& =\frac{81}{4} \int_{0}^{2 \pi} \int_{0}^{\pi / 4}\left(\frac{\sin \phi}{\cos \phi}\right) \sec ^{2} \phi d \phi d \theta=\frac{81}{4} \int_{0}^{2 \pi} \int_{0}^{\pi / 4} \tan \phi \sec ^{2} \phi d \phi d \theta
\end{aligned}
$$

$$
\text { CV: Let } u=\tan \phi \Longrightarrow d u=\sec ^{2} \phi d \phi \Longrightarrow u(\pi / 4)=\tan (\pi / 4)=1 \text { and } u(0)=\tan (0)=0
$$

$$
\stackrel{C V}{=} \quad \frac{81}{4} \int_{0}^{2 \pi} \int_{0}^{1} u d u d \theta=\frac{81}{4} \int_{0}^{2 \pi}\left[\frac{1}{2} u^{2}\right]_{u=0}^{u=1} d \theta \stackrel{F \underline{T C}}{=} \frac{81}{4} \int_{0}^{2 \pi}\left[\frac{1}{2}(1)^{2}-\frac{1}{2}(0)^{2}\right] d \theta
$$

$$
=\frac{81}{4} \int_{0}^{2 \pi} \frac{1}{2} d \theta=\frac{81}{8} \int_{0}^{2 \pi} d \theta=\frac{81}{8}[\theta]_{\theta=0}^{\theta=2 \pi} \stackrel{F T C}{=} \frac{81}{8}[2 \pi-0]=\frac{81}{4} \pi
$$

REMARK 1: The inner BS of solid E is not the half-cone, but rather the origin which has spherical form $\rho=0$
REMARK 2: The enforcement of the half-cone as the "lateral BS" of solid E is achieved by restricting $\phi: 0 \leq \phi \leq \pi / 4$
REMARK 3: Remember, projecting solid E onto the $x y$-plane (resulting in region D) is useless with spherical coordinates!

