EX 12.8.4: Use the inverse transformation $T^{-1}:\left\{\begin{array}{l}u=x y \\ v=x^{2}-y^{2}\end{array}\right.$ to setup $\iint_{D} d A$,
where D is the region in Quadrant I bounded by the hyperbolas $x y=1, x y=3, x^{2}-y^{2}=1 \& x^{2}-y^{2}=4$. $1^{\text {st }}$, sketch region D in $x y$-plane \& label BC's.

Notice that all four BC's are hyperbolas, but only their branches in Quadrant I are necessary to sketch.
Remember for region D, the BP's are not required unless they're helpful in labeling the BC's.
Sometimes, the BP's of region D can be really nasty!
Case in point, here the top-left BP of D has coordinates $\left(\frac{\sqrt{1+\sqrt{37}}}{\sqrt{2}}, \frac{3 \sqrt{2}}{\sqrt{1+\sqrt{37}}}\right) \ldots$ yeah...

$2^{\text {nd }}$, apply inverse transformation T^{-1} to each BC of D in $x y$-plane to obtain the corresponding BC of D^{*} in $u v$-plane:
Observe that the BC's of D are of the form: $T_{1}^{-1}(x, y)=1, \quad T_{1}^{-1}(x, y)=3, \quad T_{2}^{-1}(x, y)=1, \quad T_{2}^{-1}(x, y)=4$

| BC of D | | BC of D^{*} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |\quad| BC of D | | BC of D^{*} |
| :---: | :---: | :---: | :---: |
| $x y=1$ | | |
| $x y=3$ | $\xrightarrow{T^{-1}}$ | $u=1$ |
| | $u=3$ | |

$3^{r d}$, sketch region D^{*} in $u v$-plane, labeling BC's \& BP's. (see above plot)
$4^{\text {th }}$, compute Jacobian:

$$
\frac{\partial(u, v)}{\partial(x, y)}=\operatorname{det}\left[\begin{array}{ll}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right]=\operatorname{det}\left[\begin{array}{cc}
y & x \\
2 x & -2 y
\end{array}\right]=-2 y^{2}-2 x^{2}=-2\left(x^{2}+y^{2}\right) \Longrightarrow \frac{\partial(x, y)}{\partial(u, v)}=-\frac{1}{2} \cdot \frac{1}{x^{2}+y^{2}}
$$

NOW THE HARD PART: Jacobian $\frac{\partial(x, y)}{\partial(u, v)}$ must be in terms of $u \& v$ (but how to write $x^{2}+y^{2}$ in terms of u, v ????)
It's not obvious (and you're not expected to remember this slick trick - it won't show up on exams).
The moral here is that sometimes in higher mathematics, you have to "think outside the box":

$$
\begin{gathered}
\left(x^{2}+y^{2}\right)^{2}=x^{4}+2 x^{2} y^{2}+y^{4} \quad \text { and } \quad\left(x^{2}-y^{2}\right)^{2}=x^{4}-2 x^{2} y^{2}+y^{4} \\
\Longrightarrow\left(x^{2}+y^{2}\right)^{2}-\left(x^{2}-y^{2}\right)^{2}=4 x^{2} y^{2}=4(x y)^{2} \quad \Longrightarrow\left(x^{2}+y^{2}\right)^{2}=4(x y)^{2}+\left(x^{2}-y^{2}\right)^{2}=4 u^{2}+v^{2} \\
\Longrightarrow x^{2}+y^{2}=\sqrt{4 u^{2}+v^{2}} \\
\therefore \frac{\partial(x, y)}{\partial(u, v)}=-\frac{1}{2} \cdot \frac{1}{x^{2}+y^{2}}=-\frac{1}{2} \cdot \frac{1}{\sqrt{4 u^{2}+v^{2}}} \Longrightarrow\left|\frac{\partial(x, y)}{\partial(u, v)}\right|=\frac{1}{2} \cdot \frac{1}{\sqrt{4 u^{2}+v^{2}}}
\end{gathered}
$$

$5^{\text {th }}$, setup double integral in (u, v)-coordinates:
Since region D^{*} is both V-Simple \& H-Simple, either order ($d u d v$ or $d v d u$) results in only one double integral:

$$
\begin{aligned}
& \therefore \iint_{D} d A \stackrel{C C}{=} \iint_{D^{*}}\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d A=\int_{\text {Smallest } v \text {-coord in } D^{*}}^{\text {Largest } v \text {-coord in } D^{*}} \int_{\text {Left BC of } D^{*}}^{\text {Right BC of } D^{*}} \frac{1}{2 \sqrt{4 u^{2}+v^{2}}} d u d v=\int_{1}^{4} \int_{1}^{3} \frac{1}{2 \sqrt{4 u^{2}+v^{2}}} d u d v \\
& \therefore \iint_{D} d A \stackrel{C C}{=} \iint_{D^{*}}\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d A=\int_{\text {Smallest } u \text {-coord in } D^{*}}^{\text {Largest } u \text {-coord in } D^{*}} \int_{\text {Bottom BC of } D^{*}}^{\text {Top BC of } D^{*}} \frac{1}{2 \sqrt{4 u^{2}+v^{2}}} d v d u=\int_{1}^{3} \int_{1}^{4} \frac{1}{2 \sqrt{4 u^{2}+v^{2}}} d v d u
\end{aligned}
$$

