EX 13.1.6: Is $f(x, y, z)=\sqrt{1+x^{2}+y^{2}+z^{2}}$ harmonic in \mathbb{R}^{3} ? (Justify answer)
Recall that a function is harmonic if its Laplacian equals zero.
$1^{\text {st }}$, compute the first-order partials of f :

$$
\begin{aligned}
& f_{x}=\frac{1}{2}\left(1+x^{2}+y^{2}+z^{2}\right)^{-1 / 2} \frac{\partial}{\partial x}\left[1+x^{2}+y^{2}+z^{2}\right]=\frac{1}{2}(2 x)\left(1+x^{2}+y^{2}+z^{2}\right)^{-1 / 2}=\frac{x}{\sqrt{1+x^{2}+y^{2}+z^{2}}} \\
& f_{y}=\frac{1}{2}\left(1+x^{2}+y^{2}+z^{2}\right)^{-1 / 2} \frac{\partial}{\partial y}\left[1+x^{2}+y^{2}+z^{2}\right]=\frac{1}{2}(2 y)\left(1+x^{2}+y^{2}+z^{2}\right)^{-1 / 2}=\frac{y}{\sqrt{1+x^{2}+y^{2}+z^{2}}} \\
& f_{z}=\frac{1}{2}\left(1+x^{2}+y^{2}+z^{2}\right)^{-1 / 2} \frac{\partial}{\partial z}\left[1+x^{2}+y^{2}+z^{2}\right]=\frac{1}{2}(2 z)\left(1+x^{2}+y^{2}+z^{2}\right)^{-1 / 2}=\frac{z}{\sqrt{1+x^{2}+y^{2}+z^{2}}}
\end{aligned}
$$

(Notice that the Ordinary (Calc I) Chain Rule was used in finding the partial derivatives.)
$2^{\text {nd }}$, compute the non-mixed second-order partials of f :

$$
\begin{aligned}
& f_{x x}=\frac{\partial}{\partial x}\left[f_{x}\right]=\frac{\partial}{\partial x}\left[\frac{x}{\sqrt{1+x^{2}+y^{2}+z^{2}}}\right]=(\text { Use Quotient Rule \& Simplify })=\frac{1+y^{2}+z^{2}}{\left(1+x^{2}+y^{2}+z^{2}\right)^{3 / 2}} \\
& f_{y y}=\frac{\partial}{\partial y}\left[f_{y}\right]=\frac{\partial}{\partial y}\left[\frac{y}{\sqrt{1+x^{2}+y^{2}+z^{2}}}\right]=(\text { Use Quotient Rule \& Simplify })=\frac{1+x^{2}+z^{2}}{\left(1+x^{2}+y^{2}+z^{2}\right)^{3 / 2}} \\
& f_{z z}=\frac{\partial}{\partial z}\left[f_{z}\right]=\frac{\partial}{\partial z}\left[\frac{z}{\sqrt{1+x^{2}+y^{2}+z^{2}}}\right]=(\text { Use Quotient Rule \& Simplify })=\frac{1+x^{2}+y^{2}}{\left(1+x^{2}+y^{2}+z^{2}\right)^{3 / 2}}
\end{aligned}
$$

$3^{r d}$, find all points (x, y, z) (if there are any) such that $\nabla^{2} f=0$:
Assume $\nabla^{2} f=0 \quad \forall(x, y, z) \in \mathbb{R}^{3}$
Then, $f_{x x}+f_{y y}+f_{z z}=0$
$\Longrightarrow \frac{3+2 x^{2}+2 y^{2}+2 z^{2}}{\left(1+x^{2}+y^{2}+z^{2}\right)^{3 / 2}}=0$
$\Longrightarrow 3+2 x^{2}+2 y^{2}+2 z^{2}=0$
$\Longrightarrow 2 x^{2}+2 y^{2}+2 z^{2}=-3$
$\Longrightarrow x^{2}+y^{2}+z^{2}=-3 / 2 \longleftarrow$ CONTRADICTION! (since a sum of squares cannot equal a negative number!)
Therefore, $\nabla^{2} f \neq 0 \quad \forall(x, y, z) \in \mathbb{R}^{3}$

Therefore, since $\nabla^{2} f$ is never zero, f is NOT harmonic in \mathbb{R}^{3}

