<u>EX 13.1.6</u>: Is $f(x, y, z) = \sqrt{1 + x^2 + y^2 + z^2}$ harmonic in \mathbb{R}^3 ? (Justify answer)

Recall that a function is **harmonic** if its **Laplacian equals zero**.

 1^{st} , compute the first-order partials of f:

$$f_x = \frac{1}{2} \left(1 + x^2 + y^2 + z^2 \right)^{-1/2} \frac{\partial}{\partial x} \left[1 + x^2 + y^2 + z^2 \right] = \frac{1}{2} \left(2x \right) \left(1 + x^2 + y^2 + z^2 \right)^{-1/2} = \frac{x}{\sqrt{1 + x^2 + y^2 + z^2}}$$

$$f_y = \frac{1}{2} \left(1 + x^2 + y^2 + z^2 \right)^{-1/2} \frac{\partial}{\partial y} \left[1 + x^2 + y^2 + z^2 \right] = \frac{1}{2} \left(2y \right) \left(1 + x^2 + y^2 + z^2 \right)^{-1/2} = \frac{y}{\sqrt{1 + x^2 + y^2 + z^2}}$$

$$f_z = \frac{1}{2} \left(1 + x^2 + y^2 + z^2 \right)^{-1/2} \frac{\partial}{\partial z} \left[1 + x^2 + y^2 + z^2 \right] = \frac{1}{2} \left(2z \right) \left(1 + x^2 + y^2 + z^2 \right)^{-1/2} = \frac{z}{\sqrt{1 + x^2 + y^2 + z^2}}$$

(Notice that the Ordinary (Calc I) Chain Rule was used in finding the partial derivatives.)

 2^{nd} , compute the non-mixed second-order partials of f:

$$f_{xx} = \frac{\partial}{\partial x} \left[f_x \right] = \frac{\partial}{\partial x} \left[\frac{x}{\sqrt{1 + x^2 + y^2 + z^2}} \right] = (\text{Use Quotient Rule & Simplify}) = \frac{1 + y^2 + z^2}{(1 + x^2 + y^2 + z^2)^{3/2}}$$
$$f_{yy} = \frac{\partial}{\partial y} \left[f_y \right] = \frac{\partial}{\partial y} \left[\frac{y}{\sqrt{1 + x^2 + y^2 + z^2}} \right] = (\text{Use Quotient Rule & Simplify}) = \frac{1 + x^2 + z^2}{(1 + x^2 + y^2 + z^2)^{3/2}}$$
$$f_{zz} = \frac{\partial}{\partial z} \left[f_z \right] = \frac{\partial}{\partial z} \left[\frac{z}{\sqrt{1 + x^2 + y^2 + z^2}} \right] = (\text{Use Quotient Rule & Simplify}) = \frac{1 + x^2 + y^2}{(1 + x^2 + y^2 + z^2)^{3/2}}$$

 3^{rd} , find all points (x, y, z) (if there are any) such that $\nabla^2 f = 0$: Assume $\nabla^2 f = 0$, $\forall (x, y, z) \in \mathbb{R}^3$

Assume
$$\nabla^{-}f = 0$$
 $\forall (x, y, z) \in \mathbb{R}^{+}$
Then, $f_{xx} + f_{yy} + f_{zz} = 0$
 $\Rightarrow \frac{3 + 2x^{2} + 2y^{2} + 2z^{2}}{(1 + x^{2} + y^{2} + z^{2})^{3/2}} = 0$
 $\Rightarrow 3 + 2x^{2} + 2y^{2} + 2z^{2} = 0$
 $\Rightarrow 2x^{2} + 2y^{2} + 2z^{2} = -3$
 $\Rightarrow x^{2} + y^{2} + z^{2} = -3/2 \leftarrow \text{CONTRADICTION!}$ (since a sum of squares cannot equal a negative number!)
Therefore, $\nabla^{2}f \neq 0 \quad \forall (x, y, z) \in \mathbb{R}^{3}$

Therefore, since $\nabla^2 f$ is never zero, f is NOT harmonic in \mathbb{R}^3

^{©2013} Josh Engwer – Revised November 11, 2014