Recall the line integral formula for work done by a force field (instead of a constant force vector):

$$
\text { Work }=\int_{\Gamma} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{R}}
$$

Parameterize Γ \& encapsulate it into vector function $\overrightarrow{\mathbf{R}}(t)$:

$$
\Gamma:\left\{\begin{array}{l}
x(t)=1+(3-1) t=2 t+1 \\
y(t)=0+(4-0) t=4 t \\
z(t)=2+(1-2) t=2-t \\
t \in[0,1]
\end{array} \quad \Longrightarrow \overrightarrow{\mathbf{R}}(t):=\langle 2 t+1,4 t, 2-t\rangle \quad \text { for } 0 \leq t \leq 1\right.
$$

Express differential $d \overrightarrow{\mathbf{R}}$ in terms of $t \& d t$:

$$
d \overrightarrow{\mathbf{R}}=\overrightarrow{\mathbf{R}}^{\prime}(t) d t=\left\langle\frac{d}{d t}[2 t+1], \frac{d}{d t}[4 t], \frac{d}{d t}[2-t]\right\rangle d t=\langle 2,4,-1\rangle d t
$$

Rewrite line integral as an equivalent ordinary single integral \& compute it:

$$
\begin{aligned}
\text { Work } & =\int_{\Gamma} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{R}} \\
& =\int_{\Gamma}\left\langle 2 x y, x^{2}+2, y\right\rangle \cdot d \overrightarrow{\mathbf{R}} \\
& =\int_{\text {Starting } t \text {-value of } \Gamma}^{\text {Ending }}\left\langle 2(2 t+1)(4 t),(2 t+1)^{2}+2,(4 t)\right\rangle \cdot\langle 2,4,-1\rangle d t \\
& =\int_{0}^{1}\left\langle 16 t^{2}+8 t, 4 t^{2}+4 t+3,4 t\right\rangle \cdot\langle 2,4,-1\rangle d t \\
& =\int_{0}^{1}\left[2\left(16 t^{2}+8 t\right)+4\left(4 t^{2}+4 t+3\right)+(-1)(4 t)\right] d t \\
& =\int_{0}^{1}\left[32 t^{2}+16 t+16 t^{2}+16 t+12-4 t\right] d t \\
& =\int_{0}^{1}\left[48 t^{2}+28 t+12\right] d t \\
& =\left[16 t^{3}+14 t^{2}+12 t\right]_{t=0}^{t=1} \\
& F \underline{=} C\left[16(1)^{3}+14(1)^{2}+12(1)\right]-\left[16(0)^{3}+14(0)^{2}+12(0)\right] \\
& =42
\end{aligned}
$$

