(a) Verify that $\overrightarrow{\mathbf{F}}$ is conservative. \quad (b) Find a scalar potential f for $\overrightarrow{\mathbf{F}} . \quad$ (c) Compute $I=\int_{C} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{R}}$.
(a) Let M, N be the components of $\overrightarrow{\mathbf{F}}: \quad M(x, y)=y^{2} \quad N(x, y)=2 x y$

Since vector field is 2 D , compute the cross partials:

$$
\frac{\partial M}{\partial y}=\frac{\partial}{\partial y}\left[y^{2}\right]=2 y \quad \frac{\partial N}{\partial x}=\frac{\partial}{\partial x}[2 x y]=2 y
$$

$\therefore \quad$ Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}, \quad \overrightarrow{\mathbf{F}}$ is conservative.
(b) A scalar potential f can be found using either the 1-phi or 2-phi method.

1-phi Method:

$$
\overrightarrow{\mathbf{F}}=\nabla f \Longrightarrow\left\langle y^{2}, 2 x y-3\right\rangle=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle
$$

Equate one set of components of $\overrightarrow{\mathbf{F}} \& \nabla f$: (here, the $2^{\text {nd }}$ components are equated)

$$
\Longrightarrow \frac{\partial f}{\partial y}=2 x y-3 \Longrightarrow f(x, y)=\int(2 x y-3) d y=(\text { Treat } x \text { as constant })=x y^{2}-3 y+\varphi(x)
$$

$$
\therefore f(x, y)=x y^{2}-3 y+\varphi(x)
$$

$\Longrightarrow \frac{\partial f}{\partial x}=\frac{\partial}{\partial x}\left[x y^{2}-3 y+\varphi(x)\right]=y^{2}-0+\varphi^{\prime}(x)$
But $\frac{\partial f}{\partial x}=y^{2}$ since $\nabla f=\overrightarrow{\mathbf{F}}$
$\therefore y^{2}+\varphi^{\prime}(x)=y^{2} \Longrightarrow \varphi^{\prime}(x)=0 \Longrightarrow \varphi(x)=\int 0 d x=K$, where $K \in \mathbb{R}$
$\therefore f(x, y)=x y^{2}-3 y+\varphi(x)=x y^{2}-3 y+K$
But only one scalar potential is needed, so let $K=0$.
\therefore Scalar Potential $f(x, y)=x y^{2}-3 y$

2-phi Method:

$$
\overrightarrow{\mathbf{F}}=\nabla f \Longrightarrow\left\langle y^{2}, 2 x y-3\right\rangle=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle
$$

Equate both sets of components of $\overrightarrow{\mathbf{F}} \& \nabla f$:
\therefore Scalar Potential $f(x, y)=x y^{2}-3 y$
(c) Since $\overrightarrow{\mathbf{F}}$ is conservative (AKA a gradient field), use Fundamental Theorem for Line Integrals (FTLI):

$$
I=\int_{C} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{R}}=\int_{C} \nabla f \cdot d \overrightarrow{\mathbf{R}} \stackrel{F \stackrel{T L I}{=}}{=} f(Q)-f(P)=f(2,-1)-f(0,0)=\left[(2)(-1)^{2}-3(-1)\right]-\left[(0)(0)^{2}-3(0)\right]=5
$$

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=y^{2} \quad \Longrightarrow \quad f(x, y)=\int y^{2} d x \quad=x y^{2}+\varphi_{1}(y) \\
& \frac{\partial f}{\partial y}=2 x y-3 \quad \Longrightarrow \quad f(x, y)=\int(2 x y-3) d y \quad=\quad x y^{2}-3 y+\varphi_{2}(x) \\
& \therefore f(x, y)=x y^{2}+\varphi_{1}(y)=x y^{2}-3 y+\varphi_{2}(x) \\
& \Longrightarrow x y^{2}+\varphi_{1}(y)=x y^{2}-3 y+\varphi_{2}(x) \\
& \Longrightarrow \varphi_{1}(y)=-3 y+\varphi_{2}(x) \\
& \Longrightarrow \varphi_{1}(y)=-3 y \text { and } \varphi_{2}(x)=0 \\
& \text { (Do you see why??) }
\end{aligned}
$$

