EX 13.4.2:| Let I be the positively oriented rectangle with vertices (0,0), (3,0), (0,4), (3,4).

Use Green’s Theorem to compute [ = ?{ [2xy dz + x cos(my) dy].
r

Let F(z,y) = (M(z,y), N(x,y)), where  M(z,y) = 20y and N(z,y) = x cos(ry)

Compute the cross partials:
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Since Green’s Thm results in a double integral, sketch path I' & region D enclosed by I', labeling BC’s & BP’s:
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Observe that region D is simply connected & path I' is a Jordan curve, so Green’s Theorem is applicable.

Moreover, region D is both V-Simple & H-Simple, so only one iterated double integral’s needed for order dy dz or dx dy.
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[3cos(my) — 9] dy
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dx dy

[cos(my) — 2x] dx dy

(Picking the order dy dx also works fine)



