Use Green's Theorem to compute $I=\oint_{\Gamma}[2 x y d x+x \cos (\pi y) d y]$.
Let $\overrightarrow{\mathbf{F}}(x, y)=\langle M(x, y), N(x, y)\rangle$, where $\quad M(x, y)=2 x y \quad$ and $\quad N(x, y)=x \cos (\pi y)$
Compute the cross partials: $\quad \frac{\partial M}{\partial y}=\frac{\partial}{\partial y}[2 x y]=2 x \quad \frac{\partial N}{\partial x}=\frac{\partial}{\partial x}[x \cos (\pi y)]=\cos (\pi y)$
Since Green's Thm results in a double integral, sketch path Γ \& region D enclosed by Γ, labeling BC's \& BP's:

Observe that region D is simply connected \& path Γ is a Jordan curve, so Green's Theorem is applicable.
Moreover, region D is both V-Simple \& H-Simple, so only one iterated double integral's needed for order $d y d x$ or $d x d y$.

$$
\begin{aligned}
I & \oint_{\Gamma}[M d x+N d y] \\
& =\iint_{D}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d A \\
& =\iint_{D}[\cos (\pi y)-2 x] d A \\
& =\int_{\text {Smallest } y \text {-coord }}^{\text {Largest } y \text {-coord }} \int_{\text {Left BC of } D}^{\text {Right BC of } D}[\cos (\pi y)-2 x] d x d y \quad \quad \text { (Picking the order } d y d x \text { also works fine) } \\
& =\int_{0}^{4} \int_{0}^{3}[\cos (\pi y)-2 x] d x d y \\
& =\int_{0}^{4}\left[x \cos (\pi y)-x^{2}\right]_{x=0}^{x=3} d y \\
& =\int_{0}^{4}[3 \cos (\pi y)-9] d y \\
& \left.=\frac{3}{\pi} \sin (\pi y)-9 y\right]_{y=0}^{y=4} \\
& =\frac{3}{\pi} \sin (4 \pi)-9(4) \\
& =-36
\end{aligned}
$$

