In anticipation of Stokes' Theorem, let $\overrightarrow{\mathbf{F}}(x, y, z)=\left\langle-y^{2}, x, z^{2}\right\rangle$ and $d \overrightarrow{\mathbf{R}}=\langle d x, d y, d z\rangle$

$$
\text { Then } \nabla \times \overrightarrow{\mathbf{F}}=\left|\begin{array}{ccc}
\widehat{\mathbf{i}} & \widehat{\mathbf{j}} & \widehat{\mathbf{k}} \\
\partial / \partial x & \partial / \partial y & \partial / \partial z \\
-y^{2} & x & z^{2}
\end{array}\right|=\left\langle\frac{\partial}{\partial x}\left[z^{2}\right]-\frac{\partial}{\partial z}[x], \frac{\partial}{\partial z}\left[-y^{2}\right]-\frac{\partial}{\partial x}\left[z^{2}\right], \frac{\partial}{\partial x}[x]-\frac{\partial}{\partial y}\left[-y^{2}\right]\right\rangle=\langle 0,0,1+2 y\rangle
$$

Choose an appropriate surface S with C as it's boundary curve:

Since C is the intersection of two surfaces, S should be one of the two surfaces.

Pick the plane for S since it can be represented in the form $z=f(x, y)$.
Let S be the portion of plane $y+z=2$ inside cylinder $x^{2}+y^{2}=1$. Then, $y+z=2 \Longrightarrow z=2-y \Longrightarrow f(x, y)=2-y$

$$
\Longrightarrow f_{x}=\frac{\partial}{\partial x}[2-y]=0, \quad f_{y}=\frac{\partial}{\partial y}[2-y]=-1
$$

Determine the compatible unit normal $\widehat{\mathbf{N}}$ to the surface S and express $\widehat{\mathbf{N}} d S$ in terms of $d A$:
Since path C is oriented CCW, unit normal $\widehat{\mathbf{N}}$ should be upward by the Right-Hand Rule.
Since unit normal $\widehat{\mathbf{N}}$ is upward, $\widehat{\mathbf{N}} d S=\left\langle-f_{x},-f_{y}, 1\right\rangle d A \quad$ (instead of $\widehat{\mathbf{N}} d S=\left\langle f_{x}, f_{y},-1\right\rangle d A$)

$$
\Longrightarrow \widehat{\mathbf{N}} d S=\langle-(0),-(-1), 1\rangle d A=\langle 0,1,1\rangle d A
$$

Project S onto the region D on the $x y$-plane, sketch D and label BP's \& BC's:
Since S is inside cylinder $x^{2}+y^{2}=1$ which projects onto circle $x^{2}+y^{2}=1$ on $x y$-plane, D is closed disk $x^{2}+y^{2} \leq 1$.
Since D is a disk, expect to write eventual double integral in polar coordinates.

Use Stokes' Thm to write line integral as flux integral, then write flux integral as double integral, finally compute it:

$$
\begin{array}{rll}
I & & \oint_{C} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{R}} \\
& =\iint_{S}(\nabla \times \overrightarrow{\mathbf{F}}) \cdot \widehat{\mathbf{N}} d S \\
& = & \iint_{D}\langle 0,0,1+2 y\rangle \cdot\langle 0,1,1\rangle d A \\
& = & \iint_{D}(1+2 y) d A \\
P O L A R & & \int_{\text {Smallest } \theta \text {-value }}^{\text {Largest } \theta \text {-value }} \int_{\text {Pole }}^{\text {Outer BC }}[1+2(r \sin \theta)] r d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{1}\left(r+2 r^{2} \sin \theta\right) d r d \theta \\
& = & (\text { I assume you're comfortable with computing iterated double integrals })=\pi
\end{array}
$$

