Let surface S be the boundary of solid E with outward unit normal $\widehat{\mathbf{N}}$.
Let vector field $\overrightarrow{\mathbf{F}}(x, y, z)=\left\langle x+\arctan y, 2 y+e^{z}, z^{2}-\sin x\right\rangle$.
Use the Divergence Theorem (AKA Gauss' Theorem) to compute the surface integral $I=\oiint_{S} \overrightarrow{\mathbf{F}} \cdot \widehat{\mathbf{N}} d S$.

In anticipation of using Gauss' Theorem, compute the divergence of $\overrightarrow{\mathbf{F}}$:

$$
\begin{aligned}
& \nabla \cdot \overrightarrow{\mathbf{F}}=\frac{\partial}{\partial x}[x+\arctan y]+\frac{\partial}{\partial y}\left[2 y+e^{z}\right]+\frac{\partial}{\partial z}\left[z^{2}-\sin x\right]=(1+0)+(2+0)+(2 z-0)=3+2 z \\
& \therefore \quad \nabla \cdot \overrightarrow{\mathbf{F}}=3+2 z
\end{aligned}
$$

Since solid E is not easily described in spherical coordinates, project solid E onto region D in $x y$-plane: BS's of E, planes $y=0 \& y=2$, are trivially projected onto lines $y=0 \& y=2 \leftarrow$ Top \& Bottom BC's of D Intersect top BS (parabolic cylinder) with bottom BS (plane $z=0$):

$$
0=1-x^{2} \Longrightarrow \text { lines } x=-1 \& x=1 \leftarrow \text { Left \& Right BC's of } D
$$

Since D is a square, expect to write eventual iterated triple integral in rectangular coordinates.

Use Gauss' Thm to write closed flux integral as triple integral, then write it as iterated triple integral, finally compute it:

$$
\begin{aligned}
I & =\oiint_{S} \overrightarrow{\mathbf{F}} \cdot \widehat{\mathbf{N}} d S \\
& =\iiint_{E}^{G A U S S} \nabla \cdot \overrightarrow{\mathbf{F}} d V \\
& =\iiint_{E}(3+2 z) d V \\
& =\iint_{D} \int_{\text {Btm BS of } E}^{\mathrm{Top} \mathrm{BS} \text { of } E}(3+2 z) d z d A \\
& =\int_{\text {Smallest } x \text {-coord in } D}^{\text {Largest } x-\text { coord in } D} \int_{\mathrm{Btm} \mathrm{BC} \text { of } D}^{\mathrm{Top} \mathrm{BC} \text { of } D} \int_{\mathrm{Btm} \mathrm{BS} \text { of } E}^{\mathrm{Top} \operatorname{BS} \text { of } E}(3+2 z) d z d y d x \\
& =\int_{-1}^{1} \int_{0}^{2} \int_{0}^{1-x^{2}}(3+2 z) d z d y d x \\
& =\quad(\text { I assume you're comfortable with computing iterated triple integrals })=\frac{152}{15}
\end{aligned}
$$

