EX 9.7.13: Given the quadric surface $\frac{x^{2}}{4}+\frac{y^{2}}{9}-\frac{z^{2}}{16}=0$,
(a) Find the intersection of the quadric surface with the plane $z=8$

Plug plane into quadric surface \& simplify:
$z=8 \Longrightarrow \frac{x^{2}}{4}+\frac{y^{2}}{9}-\frac{(8)^{2}}{16}=0 \Longrightarrow \frac{x^{2}}{4}+\frac{y^{2}}{9}=4 \Longrightarrow \frac{x^{2}}{16}+\frac{y^{2}}{36}=1 \longleftarrow$ Ellipse
(b) Find the intersection of the quadric surface with the plane $z=0$

Plug plane into quadric surface \& simplify:
$z=0 \Longrightarrow \frac{x^{2}}{4}+\frac{y^{2}}{9}-\frac{(0)^{2}}{16}=0 \Longrightarrow \frac{x^{2}}{4}+\frac{y^{2}}{9}=0 \Longrightarrow\left\{\begin{array}{l}x=0 \\ y=0\end{array} \Longrightarrow\left\{\begin{array}{l}x=0 \\ y=0 \\ z=0\end{array} \Longrightarrow \boxed{(0,0,0) \longleftarrow \text { Origin }}\right.\right.$
(c) Find the intersection of the quadric surface with the plane $y=-3$

Plug plane into quadric surface \& simplify: $y=-3 \Longrightarrow \frac{x^{2}}{4}+\frac{(-3)^{2}}{9}-\frac{z^{2}}{16}=0 \Longrightarrow \Longrightarrow \frac{x^{2}}{4}-\frac{z^{2}}{16}=-1 \Longrightarrow \frac{z^{2}}{16}-\frac{x^{2}}{4}=1 \longleftarrow$ Hyperbola
(d) Find the intersection of the quadric surface with the plane $y=0$

Plug plane into quadric surface \& simplify:
$y=0 \Longrightarrow \frac{x^{2}}{4}+\frac{(0)^{2}}{9}-\frac{z^{2}}{16}=0 \Longrightarrow \Longrightarrow \frac{x^{2}}{4}-\frac{z^{2}}{16}=0$
Now, $\frac{x^{2}}{4}-\frac{z^{2}}{16}=0$ has at least one solution but is not a proper conic section since RHS is zero.
Therefore, solve for one of the variables, say x :
$\frac{x^{2}}{4}-\frac{z^{2}}{16}=0 \Longrightarrow \frac{x^{2}}{4}=\frac{z^{2}}{16} \Longrightarrow \pm \frac{x}{2}= \pm \frac{z}{4} \Longrightarrow \frac{x}{2}=\mp \frac{z}{4} \stackrel{R E M A R K \# 2}{\Longrightarrow} \frac{x}{2}= \pm \frac{z}{4} \Longrightarrow x= \pm \frac{z}{2} \Longrightarrow x=\frac{1}{2} z, x=-\frac{1}{2} z$
Therefore, Intersection is the two lines $x=\frac{1}{2} z, x=-\frac{1}{2} z$ in the $x z$-plane which intersect at the origin
(e) Find the intersection of the quadric surface with the plane $x=0$

Plug plane into quadric surface \& simplify:
$x=0 \Longrightarrow \frac{(0)^{2}}{4}+\frac{y^{2}}{9}-\frac{z^{2}}{16}=0 \Longrightarrow \frac{y^{2}}{9}-\frac{z^{2}}{16}=0$
Now, $\frac{y^{2}}{9}-\frac{z^{2}}{16}=0$ has at least one solution but is not a proper conic section since RHS is zero.
Therefore, solve for one of the variables, say y :
$\frac{y^{2}}{9}-\frac{z^{2}}{16}=0 \Longrightarrow \frac{y^{2}}{9}=\frac{z^{2}}{16} \Longrightarrow \pm \frac{y}{3}= \pm \frac{z}{4} \Longrightarrow \frac{y}{3}=\mp \frac{z}{4} \stackrel{R E M A R K \# 2}{\Longrightarrow} \frac{y}{3}= \pm \frac{z}{4} \Longrightarrow y= \pm \frac{3}{4} z \Longrightarrow y=\frac{3}{4} z, y=-\frac{3}{4} z$
Therefore, Intersection is the two lines $y=\frac{3}{4} z, y=-\frac{3}{4} z$ in the $y z$-plane which intersect at the origin
(f) Find the intersection of the quadric surface with the plane $x=-2$
$x=-2 \Longrightarrow \frac{(-2)^{2}}{4}+\frac{y^{2}}{9}-\frac{z^{2}}{16}=0 \Longrightarrow 1+\frac{y^{2}}{9}-\frac{z^{2}}{16}=0 \Longrightarrow \frac{y^{2}}{9}-\frac{z^{2}}{16}=-1$
Now, $\frac{y^{2}}{9}-\frac{z^{2}}{16}=-1$ has at least one solution \& RHS $\neq 0$, so produce canonical form:
$\frac{y^{2}}{9}-\frac{z^{2}}{16}=-1 \Longrightarrow \frac{z^{2}}{16}-\frac{y^{2}}{9}=1 \longleftarrow$ Hyperbola
REMARK \#1: RHS \equiv "Right-Hand Side (of equation)"
REMARK \#2: $w= \pm 7 \Longrightarrow w \in\{-7,7\} . w=\mp 7 \Longrightarrow w \in\{-7,7\}$. Thus, $\pm 7=\mp 7$

