VECTOR FUNCTIONS: ALGEBRA & LIMITS [SST 10.1]

• THE FUNCTION LANDSCAPE (SO FAR):

FUNCTION TYPE	PROTOTYPE	MAPPING	MEANING	FIRST SEEN
Scalar Function	y = f(x)	$f:\mathbb{R}\to\mathbb{R}$	f maps scalar \rightarrow scalar	Algebra
2D Vector Function	$\mathbf{F}(t) = \langle f_1(t), f_2(t) \rangle$	$\mathbf{F}:\mathbb{R}\to\mathbb{R}^2$	F maps scalar \rightarrow 2D vector	Calc III (Ch10)
3D Vector Function	$\mathbf{F}(t) = \langle f_1(t), f_2(t), f_3(t) \rangle$	$\mathbf{F}:\mathbb{R}\to\mathbb{R}^3$	F maps scalar \rightarrow 3D vector	Calc III (Ch10)

• VECTOR FUNCTIONS (DEFINITION):

- 2D Vector Function $\mathbf{F}(t) := \langle f_1(t), f_2(t) \rangle = f_1(t) \hat{\mathbf{i}} + f_2(t) \hat{\mathbf{j}}$, where f_1, f_2 are scalar functions.

* In other words: Input: Scalar $t \to \mathbf{F}(t) \to \text{Output: 2D Vector } \langle f_1(t), f_2(t) \rangle$

* $\operatorname{Dom}(\mathbf{F}) := \operatorname{Dom}(f_1) \cap \operatorname{Dom}(f_2)$

- 3D Vector Function $\mathbf{F}(t) := \langle f_1(t), f_2(t), f_3(t) \rangle = f_1(t) \hat{\mathbf{i}} + f_2(t) \hat{\mathbf{j}} + f_3(t) \hat{\mathbf{k}}$, where f_1, f_2, f_3 are scalar functions.

* In other words: Input: Scalar $t \to \mathbf{F}(t) \to \mathsf{Output:} 3\mathsf{D} \mathsf{Vector} \langle f_1(t), f_2(t), f_3(t) \rangle$

* $\operatorname{Dom}(\mathbf{F}) := \operatorname{Dom}(f_1) \cap \operatorname{Dom}(f_2) \cap \operatorname{Dom}(f_3)$

- Think of a vector function as a "vector encapsulation" of a **parametric equation**. Recall, t is called the **parameter**.

- If the initial point of vector function $\mathbf{F}(t)$ is chosen to be the origin for all t, then $\mathbf{F}(t)$ is called a position vector.

* As t varies, **position vector** $\mathbf{F}(t)$ traces out a **curve** that is denoted Γ .

- REMARK: The focus will be on 3D vector functions. Remove 3rd component terms to get 2D vector function result.

• VECTOR FUNCTIONS (ALGEBRA):

– Assume $\mathbf{F}(t), \mathbf{G}(t), \mathbf{H}(t)$ are vector functions & f(t), h(t) are scalar functions.

OPERATION	FORMULA	RESULT	REMARKS
Addition/Subtraction	$\mathbf{H}(t) = \mathbf{F}(t) \pm \mathbf{G}(t)$	Vector Function	$\mathrm{Dom}(\mathbf{H}) = \mathrm{Dom}(\mathbf{F}) \cap \mathrm{Dom}(\mathbf{G})$
Scalar Multiplication	$\mathbf{H}(t) = f(t)\mathbf{F}(t)$	Vector Function	$\operatorname{Dom}(\mathbf{H}) = \operatorname{Dom}(f) \cap \operatorname{Dom}(\mathbf{F})$
Dot Product	$h(t) = \mathbf{F}(t) \cdot \mathbf{G}(t)$	Scalar Function	$\operatorname{Dom}(h) = \operatorname{Dom}(\mathbf{F}) \cap \operatorname{Dom}(\mathbf{G})$
Cross Product	$\mathbf{H}(t) = \mathbf{F}(t) \times \mathbf{G}(t)$	Vector Function	$\mathrm{Dom}(\mathbf{H}) = \mathrm{Dom}(\mathbf{F}) \cap \mathrm{Dom}(\mathbf{G})$
			$\mathbf{G}(t) \times \mathbf{F}(t) = -\mathbf{F}(t) \times \mathbf{G}(t)$

• VECTOR FUNCTIONS (LIMITS):

- $\text{ Suppose } \lim_{t \to t_0} f_1(t), \lim_{t \to t_0} f_2(t), \lim_{t \to t_0} f_3(t) \text{ are all finite. Then: } \lim_{t \to t_0} \mathbf{F}(t) := \left[\lim_{t \to t_0} f_1(t)\right] \widehat{\mathbf{i}} + \left[\lim_{t \to t_0} f_2(t)\right] \widehat{\mathbf{j}} + \left[\lim_{t \to t_0} f_3(t)\right] \widehat{\mathbf{k}} + \left[\lim_{t$
- Otherwise, if any of the above three scalar limits are $-\infty, +\infty$ or DNE, then $\lim_{t \to t_0} \mathbf{F}(t) = \text{DNE}$.

LIMIT RULE	FORMULA			
Sum/Diff Rule	$\lim_{t \to t_0} \left[\mathbf{F}(t) \pm \mathbf{G}(t) \right] = \left[\lim_{t \to t_0} \mathbf{F}(t) \right] =$	$\pm \left[\lim_{t \to t_0} \mathbf{G}(t) \right]$		
Scalar Multiple Rule	$\lim_{t \to t_0} \left[f(t) \mathbf{F}(t) \right] = \left[\lim_{t \to t_0} f(t) \right] \left[\int_{t}^{t} f(t) dt \right]$	$\lim_{t \to t_0} \mathbf{F}(t) \bigg]$		
Dot Product Rule	$\lim_{t \to t_0} \left[\mathbf{F}(t) \cdot \mathbf{G}(t) \right] = \left[\lim_{t \to t_0} \mathbf{F}(t) \right] \cdot$	$\left[\lim_{t \to t_0} \mathbf{G}(t)\right]$		
Cross Product Rule	$\lim_{t \to t_0} \left[\mathbf{F}(t) \times \mathbf{G}(t) \right] = \left[\lim_{t \to t_0} \mathbf{F}(t) \right] >$	$\times \left[\lim_{t \to t_0} \mathbf{G}(t) \right]$		

• VECTOR FUNCTIONS (CONTINUITY):

- Vector function $\mathbf{F}(t)$ is continuous at point $t_0 \iff \mathbf{F} \in C(\{t_0\}) \iff \left(t_0 \in \text{Dom}(\mathbf{F}) \text{ AND } \lim_{t \to t_0} \mathbf{F}(t) = \mathbf{F}(t_0)\right)$

- Vector function $\mathbf{F}(t)$ is continuous on a set $S \iff \mathbf{F} \in C(S) \iff$ scalar functions $f_1, f_2, f_3 \in C(S)$

©2013 Josh Engwer - Revised August 26, 2014

<u>EX 10.1.1:</u> Encapsulate the parametric equation into the position vector $\mathbf{R}(t)$: $\begin{cases} x = t^2 \\ y = e^{3t} \\ z = 1 - \cos 4t \\ t \in \mathbb{D} \end{cases}$

<u>EX 10.1.2</u> Find the position vector $\mathbf{R}(t)$ that traces the curve Γ ,

where Γ is the intersection of the plane x + y + z - 2 = 0 with the parabolic cylinder $z = 3x^2$.

Find the position vector $\mathbf{R}(t)$ that traces the curve Γ , EX 10.1.3:

where Γ is the intersection of the planes $\mathbb{P}_1: x + y + z - 2 = 0$ and $\mathbb{P}_2: 2x - y + 3z + 4 = 0$.

Find the position vector $\mathbf{R}(t)$ that traces the curve Γ , EX 10.1.4:

where Γ is the intersection of the elliptic paraboloid $z = x^2 + y^2$ with the elliptic cylinder $\frac{x^2}{2} + \frac{y^2}{9} = 1$.

<u>EX 10.1.5</u>: Find the domain of the vector function $\mathbf{F}(t) = \langle e^t, 5t - 7, \sin t \cos(3t) \rangle$

EX 10.1.6:] Find the domain of the vector function $\mathbf{F}(t) = \sqrt{t+6} \ \hat{\mathbf{i}} - \mathbf{F}(t)$	$\left(\frac{19}{t-100}\right)\widehat{\mathbf{j}} + (\ln t)\widehat{\mathbf{k}}$
------------	--	---

EX 10.1.7: Let $\mathbf{F}(t) = \langle 1, t, t^2 \rangle$ and \mathbf{C}	$\mathbf{G}(t) = (e^t) \widehat{\mathbf{i}} - (\cos t) \widehat{\mathbf{k}}$	•	
Compute: (a) $3\mathbf{F}(t) - 2t^2\mathbf{G}(t)$	(b) $\mathbf{F}(t) \cdot \mathbf{G}(t)$	(c) $\mathbf{F}(t) \times \mathbf{G}(t)$	(d) $\mathbf{G}(t) \times \mathbf{F}(t)$

<u>EX 10.1.8</u> : Let $\mathbf{F}(t) = \langle 1, t, t^2 \rangle$.				
Evaluate limits: (a) $\lim_{t \to 2} \mathbf{F}(t)$	(b) $\lim_{t \to 2^{-}} \mathbf{F}(t)$	(c) $\lim_{t \to 2^+} \mathbf{F}(t)$		

<u>EX 10.1.9</u> : Let $\mathbf{G}(t) = (t^{-2}) \hat{\mathbf{i}} + \left(\frac{1}{t}\right) \hat{\mathbf{i}}$	$\left(\mathbf{j} \right) \widehat{\mathbf{j}} - \left(e^{8t} \right) \widehat{\mathbf{k}}.$			
Evaluate limits: (a) $\lim_{t \to -\infty} \mathbf{G}(t)$	(b) $\lim_{t \to \infty} \mathbf{G}(t)$	(c) $\lim_{t \to 0^{-}} \mathbf{G}(t)$	(d) $\lim_{t \to 0^+} \mathbf{G}(t)$	(e) $\lim_{t \to 0} \mathbf{G}(t)$