FUNCTIONS OF SEVERAL VARIABLES: LIMITS \& CONTINUITY [SST 11.2]

- THE FUNCTION LANDSCAPE (SO FAR):

FUNCTION TYPE	PROTOTYPE	MAPPING	GRAPH	FIRST SEEN
(Scalar) Function	$y=f(x)$	$f: \mathbb{R} \rightarrow \mathbb{R}$	2D Curve in $x y$-plane	Algebra
3D Vector Function	$\mathbf{F}(t)=\left\langle f_{1}(t), f_{2}(t), f_{3}(t)\right\rangle$	$\mathbf{F}: \mathbb{R} \rightarrow \mathbb{R}^{3}$	3 D Curve in $x y z$-space	Calc III (Ch10)
(Scalar) Function of 2 Variables	$z=f(x, y)$	$f: \mathbb{R}^{2} \rightarrow \mathbb{R}$	3 D Surface in $x y z$-space	Calc III (Ch11)
(Scalar) Function of 3 Variables	$w=f(x, y, z)$	$f: \mathbb{R}^{3} \rightarrow \mathbb{R}$	4 D Hypersurface in $x y z w$-space	Calc III (Ch11)

- FUNCTIONS OF TWO VARIABLES (EVALUATING LIMITS):

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)
$$

1. Try naive substitution (NS): Try to compute $f\left(x_{0}, y_{0}\right)$.
2. If naive substitution yields a finite real number L, then $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=L$
3. If naive substitution yields indeterminate form $\frac{0}{0}, \pm \frac{\infty}{\infty}, 0 \cdot \infty$, or $\infty-\infty$, then consider the following:

- If $\left(x_{0}, y_{0}\right)=(0,0)$ AND $f(x, y)$ contains $\left(x^{2}+y^{2}\right)$ expression(s), consider converting to polar coordinates: $\left\{\begin{array}{l}x=r \cos \theta \\ y=r \sin \theta\end{array} \Longrightarrow\left\{\begin{array}{l}r^{2}=x^{2}+y^{2} \\ \tan \theta=\frac{y}{x}\end{array}\right.\right.$
- Factor polynomial(s) \& cancel like factors
- Rationalize the numerator or denominator
- Combine fractions
- Throw a factor "downstairs" e.g. $x^{2} \ln x=\frac{\ln x}{1 / x^{2}}$
- Change of variables (CV): Let $u=g(x, y)$, then $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)$ becomes $\lim _{u \rightarrow u_{0}} h(u)$
* In this form $\lim _{u \rightarrow u_{0}} h(u)$, one can use any notion/method available from Calculus I such as L'Hôpital's Rule and One-sided limits.
- REMARK: L'Hôpital's Rule is useless for functions of several variables!
- REMARK: One-sided limits are meaningless for functions of several variables!
- FUNCTIONS OF TWO VARIABLES (NON-EXISTENCE OF LIMITS):
- The limit $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=L$ holds regardless of which path was taken to approach $\left(x_{0}, y_{0}\right)$
- To show a limit does not exist, show that two different paths to the point yield different limits.
- FUNCTIONS OF TWO VARIABLES (CONTINUITY):
- Function $f(x, y)$ is continuous at point $\left(x_{0}, y_{0}\right)$ if:

$$
f\left(x_{0}, y_{0}\right) \text { exists, } \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y) \text { exists, AND } \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=f\left(x_{0}, y_{0}\right)
$$

- Function $f(x, y)$ is continuous on set $S \Longleftrightarrow f$ is continuous at each point in S.
- Similar statements hold for functions of 3 variables.

EX 11.2.1: Evaluate $\lim _{(x, y) \rightarrow(-1,2)}\left(x^{3}+x^{2} y^{2}-x y+y^{2}-1\right)$

EX 11.2.2: Evaluate $\lim _{(x, y) \rightarrow(1,1)} \frac{x^{2}-y^{2}}{x-y}$

EX 11.2.3: Evaluate $\lim _{(x, y) \rightarrow(c, c)} \frac{x^{2}-y^{2}}{x-y}$, where $c \in \mathbb{R}$

EX 11.2.4: Evaluate $\lim _{(x, y) \rightarrow(0,0)} \frac{\sin (x y)}{x y}$

EX 11.2.6: Evaluate $\lim _{(x, y, z) \rightarrow(1,-2,3)} \frac{\left(x^{2}-1\right)\left(y^{2}-4\right)\left(z^{2}-\pi^{2}\right)}{(x-1)(y+2)(z-\pi)}$

EX 11.2.7: Evaluate $\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{x^{2}+y^{2}+z^{2}}{3-\sqrt{x^{2}+y^{2}+z^{2}+9}}$

EX 11.2.8: Evaluate $\lim _{(x, y) \rightarrow(0,0)} \frac{\tan \left(x^{2}+y^{2}\right)}{x^{2}+y^{2}}$

EX 11.2.9: Evaluate $\lim _{(x, y) \rightarrow(0,0)} x \ln \sqrt{x^{2}+y^{2}}$

EX 11.2.10: Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4} y^{4}}{\left(x^{2}+y^{4}\right)^{3}}$ does not exist.

EX 11.2.11: Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x-y^{2}}{x+y^{2}}$ does not exist.

EX 11.2.12: Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{x^{4}+y^{4}}$ does not exist.

EX 11.2.13: Let $f(x, y)=\left\{\begin{array}{cc}\frac{x y^{2}}{x^{2}+y^{2}} & \text {, for }(x, y) \neq(0,0) \\ 0 & \text {, for }(x, y)=(0,0)\end{array}\right.$. Is f continuous at $(0,0)$? (Justify answer)

EX 11.2.14: Let $g(x, y)=\left\{\begin{array}{cl}\frac{x y^{3}}{x^{2}+y^{6}} & , \text { for }(x, y) \neq(0,0) \\ 0 & , \text { for }(x, y)=(0,0)\end{array}\right.$. Is g continuous at $(0,0)$? (Justify answer)

EX 11.2.15: Let $h(x, y)=\left\{\begin{array}{cl}\frac{x^{3}+y^{3}}{x^{2}+y^{2}} & , \text { for }(x, y) \neq(0,0) \\ k & , \text { for }(x, y)=(0,0)\end{array}\right.$, where $k \in \mathbb{R}$.
What value of k ensures that h is continuous at (0,0)?

