FUNCTIONS OF SEVERAL VARIABLES: LIMITS & CONTINUITY [SST 11.2]

• THE FUNCTION LANDSCAPE (SO FAR):

FUNCTION TYPE	PROTOTYPE	MAPPING	GRAPH	FIRST SEEN
(Scalar) Function	y = f(x)	$f:\mathbb{R}\to\mathbb{R}$	2D Curve in xy -plane	Algebra
3D Vector Function	$\mathbf{F}(t) = \langle f_1(t), f_2(t), f_3(t) \rangle$	$\mathbf{F}:\mathbb{R}\to\mathbb{R}^3$	3D Curve in <i>xyz</i> -space	Calc III (Ch10)
(Scalar) Function of 2 Variables	z = f(x, y)	$f:\mathbb{R}^2\to\mathbb{R}$	3D Surface in <i>xyz</i> -space	Calc III (Ch11)
(Scalar) Function of 3 Variables	w = f(x, y, z)	$f:\mathbb{R}^3\to\mathbb{R}$	4D Hypersurface in $xyzw$ -space	Calc III (Ch11)

• FUNCTIONS OF TWO VARIABLES (EVALUATING LIMITS):

 $\lim_{(x,y)\to(x_0,y_0)}f(x,y)$

- 1. Try naive substitution (NS): Try to compute $f(x_0, y_0)$.
- 2. If naive substitution yields a finite real number L, then $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = L$
- 3. If naive substitution yields indeterminate form $\frac{0}{0}$, $\pm \frac{\infty}{\infty}$, $0 \cdot \infty$, or $\infty \infty$, then consider the following:
 - If $(x_0, y_0) = (0, 0)$ AND f(x, y) contains $(x^2 + y^2)$ expression(s), consider converting to **polar coordinates**: $\begin{cases}
 x = r \cos \theta \\
 y = r \sin \theta
 \end{cases} \implies \begin{cases}
 r^2 = x^2 + y^2 \\
 \tan \theta = \frac{y}{x}
 \end{cases}$
 - Factor polynomial(s) & cancel like factors
 - Rationalize the numerator or denominator
 - Combine fractions
 - Throw a factor "downstairs" e.g. $x^2 \ln x = \frac{\ln x}{1/x^2}$
 - Change of variables (CV): Let u = g(x, y), then $\lim_{(x,y)\to(x_0,y_0)} f(x, y)$ becomes $\lim_{u\to u_0} h(u)$
 - * In this form $\lim_{u\to u_0} h(u)$, one can use any notion/method available from Calculus I such as L'Hôpital's Rule and One-sided limits.
- REMARK: L'Hôpital's Rule is useless for functions of several variables!
- REMARK: One-sided limits are meaningless for functions of several variables!

• FUNCTIONS OF TWO VARIABLES (NON-EXISTENCE OF LIMITS):

- The limit $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = L$ holds regardless of which path was taken to approach (x_0,y_0)
- To show a limit does not exist, show that two different paths to the point yield different limits.

• FUNCTIONS OF TWO VARIABLES (CONTINUITY):

- Function f(x, y) is continuous at point (x_0, y_0) if:

$$f(x_0, y_0)$$
 exists, $\lim_{(x,y) \to (x_0, y_0)} f(x, y)$ exists, AND $\lim_{(x,y) \to (x_0, y_0)} f(x, y) = f(x_0, y_0)$

- Function f(x,y) is **continuous on set** $S \iff f$ is continuous at each point in S.
- Similar statements hold for functions of 3 variables.

<u>EX 11.2.1:</u> Evaluate $\lim_{(x,y)\to(-1,2)} \left(x^3 + x^2y^2 - xy + y^2 - 1\right)$

EX 11.2.2: Evaluate $\lim_{(x,y)\to(1,1)} \frac{x^2 - y^2}{x - y}$

<u>EX 11.2.3</u> Evaluate $\lim_{(x,y)\to(c,c)} \frac{x^2 - y^2}{x - y}$, where $c \in \mathbb{R}$

<u>EX 11.2.4</u>: Evaluate $\lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{xy}$

©2013 Josh Engwer – Revised December 1, 2014

<u>EX 11.2.5:</u> Evaluate $\lim_{(x,y,z)\to(1,3,2)} 3^z \ln(1-x+e^{xy})$

<u>EX 11.2.6</u>: Evaluate $\lim_{(x,y,z)\to(1,-2,3)} \frac{(x^2-1)(y^2-4)(z^2-\pi^2)}{(x-1)(y+2)(z-\pi)}$

EX 11.2.7: Evaluate $\lim_{(x,y,z)\to(0,0,0)} \frac{x^2 + y^2 + z^2}{3 - \sqrt{x^2 + y^2 + z^2 + 9}}$

<u>EX 11.2.8</u>: Evaluate $\lim_{(x,y)\to(0,0)} \frac{\tan(x^2+y^2)}{x^2+y^2}$

<u>EX 11.2.9</u> Evaluate $\lim_{(x,y)\to(0,0)} x \ln \sqrt{x^2 + y^2}$

<u>EX 11.2.10</u>: Show that $\lim_{(x,y)\to(0,0)} \frac{x^4y^4}{(x^2+y^4)^3}$ does not exist.

<u>EX 11.2.11:</u> Show that $\lim_{(x,y)\to(0,0)} \frac{x-y^2}{x+y^2}$ does not exist.

<u>EX 11.2.12</u>: Show that $\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^4+y^4}$ does not exist.

©2013 Josh Engwer – Revised December 1, 2014

EX 11.2.13: Let
$$f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^2} & \text{, for } (x,y) \neq (0,0) \\ 0 & \text{, for } (x,y) = (0,0) \end{cases}$$

. Is f continuous at (0,0)? (Justify answer)

$$\underline{\mathbf{EX \ 11.2.14:}} \ \text{Let} \ g(x,y) = \begin{cases} \frac{xy^3}{x^2 + y^6} &, \text{ for } (x,y) \neq (0,0) \\ 0 &, \text{ for } (x,y) = (0,0) \end{cases} . \ \text{ Is } g \text{ continuous at } (0,0)? \ (\text{Justify answer}) \end{cases}$$

EX 11.2.15: Let
$$h(x,y) = \begin{cases} \frac{x^3 + y^3}{x^2 + y^2} & \text{, for } (x,y) \neq (0,0) \\ k & \text{, for } (x,y) = (0,0) \end{cases}$$
, where $k \in \mathbb{R}$.

What value of k ensures that h is continuous at (0,0)?

©2013 Josh Engwer – Revised December 1, 2014