FUNCTIONS OF SEVERAL VARIABLES: GRADIENTS [SST 11.6]

- GRADIENTS:
- Let $f(x, y) \in C^{(1,1)}$. Then the gradient of f is a vector in \mathbb{R}^{2} given by:

$$
\operatorname{grad} f \equiv \nabla f(x, y) \equiv \nabla f:=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle=f_{x} \widehat{\mathbf{i}}+f_{y} \widehat{\mathbf{j}}
$$

- Let $f(x, y, z) \in C^{(1,1,1)}$. Then the gradient of f is a vector in \mathbb{R}^{3} given by:

$$
\operatorname{grad} f \equiv \nabla f(x, y, z) \equiv \nabla f:=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle=f_{x} \widehat{\mathbf{i}}+f_{y} \widehat{\mathbf{j}}+f_{z} \widehat{\mathbf{k}}
$$

- DIRECTIONAL DERIVATIVES:

- Let $f(x, y) \in C^{(1,1)}$. Then, the directional derivative of f at point $P_{0}\left(x_{0}, y_{0}\right)$ in the direction of unit vector $\widehat{\mathbf{v}} \in \mathbb{R}^{2}$ is:

$$
D_{\mathbf{v}} f\left(x_{0}, y_{0}\right)=\nabla f\left(x_{0}, y_{0}\right) \cdot \widehat{\mathbf{v}}
$$

- Let $f(x, y, z) \in C^{(1,1,1)}$. Then, the directional derivative of f at point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ in the direction of unit vector $\widehat{\mathbf{v}} \in \mathbb{R}^{3}$ is:

$$
D_{\mathbf{v}} f\left(x_{0}, y_{0}, z_{0}\right)=\nabla f\left(x_{0}, y_{0}, z_{0}\right) \cdot \widehat{\mathbf{v}}
$$

- GRADIENT (STEEPEST ASCENT/DESCENT)
- Given surface $z=f(x, y)$ such that $f \in C^{(1,1)}$. Then:
(i) $\quad \nabla f$ is normal to a level curve that contains point (x, y).
(ii) ∇f points in the (compass) direction of steepest ascent of f from (x, y).
(iii) $-\nabla f$ points in the direction of steepest descent of f from point (x, y).
(iv) $\|\nabla f\|$ is the maximum rate of change of f at point (x, y).
- TANGENT PLANE \& NORMAL LINE TO A LEVEL SURFACE $F(x, y, z)=k$:
- Given level surface $F(x, y, z)=k$, where $k \in \mathbb{R}$ and $F \in C^{(1,1,1)}$.

Let $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ be a point on the level surface s.t. $\nabla F\left(x_{0}, y_{0}, z_{0}\right) \neq \overrightarrow{\mathbf{0}}$. Then:
The equation of the tangent plane \mathbb{T} to the level surface at point P_{0} is:

$$
\mathbb{T}: F_{x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)+F_{y}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right)+F_{z}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right)=0
$$

The equation of the normal line ℓ to the level surface at point P_{0} is:

$$
\ell(t)=\left\langle x_{0}+F_{x}\left(x_{0}, y_{0}, z_{0}\right) t, y_{0}+F_{y}\left(x_{0}, y_{0}, z_{0}\right) t, z_{0}+F_{z}\left(x_{0}, y_{0}, z_{0}\right) t\right\rangle
$$

- TANGENT PLANE \& NORMAL LINE TO A SURFACE $z=f(x, y)$:
- First, write surface as a level surface: $z=f(x, y) \Longleftrightarrow z-f(x, y)=0 \Longleftrightarrow F(x, y, z):=z-f(x, y)=0$
- Then follow the procedure above.
(a) Compute the gradient ∇f.
(b) Compute $\nabla f(-6,4)$.
(c) Compute the directional derivative $D_{\mathbf{v}} f(-6,4)$, where $\mathbf{v}=\langle\sqrt{3},-1\rangle$.

EX 11.6.2: Let $g(x, y, z)=x e^{y}+y e^{z}+z e^{x}$.
(a) Compute the gradient ∇g.
(b) Compute $\nabla g(0,0,0)$.
(c) Compute the directional derivative $D_{\mathbf{v}} g(0,0,0)$, where $\mathbf{v}=\langle 5,1,-2\rangle$.
(a) In what direction is f increasing most rapidly from point $P(1,2)$?
(b) What is the maximum rate of increase of f from point $P(1,2)$?
(c) In what direction is f decreasing most rapidly from point $P(1,2)$?

EX 11.6.4: Let $h(x, y, z)=\tan (x+2 y+3 z)$.
(a) In what direction is h increasing most rapidly from point $P(-5,1,1)$?
(b) What is the maximum rate of increase of h from point $P(-5,1,1)$?
(c) In what direction is h decreasing most rapidly from point $P(-5,1,1)$?

EX 11.6.5: Find a unit vector that's normal to the hyperbola $\frac{x^{2}}{5}-\frac{y^{2}}{3}=1$ at point $Q(\sqrt{10}, \sqrt{3})$.

EX 11.6.6: Given level surface $x^{4}+y^{4}+z^{4}=3$:
(a) Find an equation of the tangent plane to the level surface at point $P(1,-1,-1)$.
(b) Find an equation of the normal line to the level surface at point $P(1,-1,-1)$.
(c) Find a unit normal vector to the level surface at point $P(1,-1,-1)$.

EX 11.6.7: Given surface $z=\sin (x y)$:
(a) Find an equation of the tangent plane to the surface at point $P(\sqrt{\pi}, \sqrt{\pi}, 0)$.
(b) Find an equation of the normal line to the surface at point $P(\sqrt{\pi}, \sqrt{\pi}, 0)$.
(c) Find a unit normal vector to the surface at point $P(\sqrt{\pi}, \sqrt{\pi}, 0)$.

