FUNCTIONS OF TWO VARIABLES: RELATIVE EXTREMA [SST 11.7]

• OPEN, CLOSED, AND BOUNDED SETS IN \mathbb{R}^2 :

- A set $S \subseteq \mathbb{R}^2$ is **open** if S contains none of its boundary.
- A set $S \subseteq \mathbb{R}^2$ is **closed** if S contains all of its boundary.
- $-\mathbb{R}^2$ and \emptyset (empty set) are **both open and closed**.
- **Open disk** centered at (x_0, y_0) with radius r > 0: $\mathbb{D}(x_0, y_0; r) := \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < r^2\}$
- Closed disk centered at (x_0, y_0) with radius r > 0: $\overline{\mathbb{D}}(x_0, y_0; r) := \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le r^2\}$
- A set $S \subset \mathbb{R}^2$ is **bounded** if S is contained in an open disk.

• SUFFICIENT CONDITION FOR EQUALITY OF MIXED 2nd-ORDER PARTIALS:

- Let $f(x,y) \in C^{(2,2)}$. Then $f_{xy} = f_{yx}$

• CRITICAL POINTS:

- Let f(x, y) be defined on an open set $S \subseteq \mathbb{R}^2$ such that $(x_0, y_0) \in S$.

Then (x_0, y_0) is a **critical point** of f is either one of the following is true:

- (i) $f_x(x_0, y_0) = 0$ and $f_y(x_0, y_0) = 0$
- (ii) At least one of $f_x(x_0, y_0)$ or $f_y(x_0, y_0)$ DNE

• RELATIVE MIN's, RELATIVE MAX's, SADDLE POINTS ("FIRST PRINCIPLES" DEFINITIONS):

- Let f(x, y) be defined on an open set $S \subseteq \mathbb{R}^2$ such that $(x_0, y_0) \in S$. Then:
 - (x_0, y_0) is a relative maximum if $f(x, y) \leq f(x_0, y_0) \quad \forall (x, y) \in \mathbb{D}(x_0, y_0; r).$
 - (x_0, y_0) is a relative minimum if $f(x, y) \ge f(x_0, y_0) \quad \forall (x, y) \in \mathbb{D}(x_0, y_0; r).$
 - (x_0, y_0) is a saddle point if $\exists (x_1, y_1), (x_2, y_2) \in \mathbb{D}(x_0, y_0; r)$ s.t. $f(x_1, y_1) > f(x_0, y_0)$ and $f(x_2, y_2) < f(x_0, y_0)$.

• RELATIVE MIN's, RELATIVE MAX's, SADDLE POINTS (2nd-ORDER PARTIALS TEST):

- Let
$$f(x,y) \in C^{(2,2)}\left(\mathbb{D}(x_0,y_0;r)\right)$$
 s.t. f has a critical point at (x_0,y_0) .
Form the **discriminant** of f : $\Delta(x,y) := \det \begin{bmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{bmatrix} = f_{xx}f_{yy} - (f_{xy})^2$
Then:
 (x_0,y_0) is a **relative max** if $\left(\Delta(x_0,y_0) > 0 \text{ and } f_{xx}(x_0,y_0) < 0\right)$ OR $\left(\Delta(x_0,y_0) > 0 \text{ and } f_{xx}(x_0,y_0) < 0\right)$

 $(x_0, y_0) \text{ is a relative max if } \left(\Delta(x_0, y_0) > 0 \text{ and } f_{xx}(x_0, y_0) < 0 \right) \text{ OR } \left(\Delta(x_0, y_0) > 0 \text{ and } f_{yy}(x_0, y_0) < 0 \right)$ $(x_0, y_0) \text{ is a relative min if } \left(\Delta(x_0, y_0) > 0 \text{ and } f_{xx}(x_0, y_0) > 0 \right) \text{ OR } \left(\Delta(x_0, y_0) > 0 \text{ and } f_{yy}(x_0, y_0) > 0 \right)$

 (x_0, y_0) is a saddle point if $\Delta(x_0, y_0) < 0$

The test is **inconclusive** if $\Delta(x_0, y_0) = 0$. So, apply the "**First Principles**" definitions of rel min, rel max, and saddle point. (see above)

FUNCTIONS OF TWO VARIABLES: ABSOLUTE EXTREMA [SST 11.7]

• ABSOLUTE EXTREMA (DEFINITIONS):

- Given function f(x, y):

 (x_M, y_M) is an absolute maximum of f if $f(x_M, y_M) \ge f(x, y) \quad \forall (x, y) \in \text{Dom}(f)$ (x_m, y_m) is an absolute minimum of f if $f(x_m, y_m) \le f(x, y) \quad \forall (x, y) \in \text{Dom}(f)$

If (x_M, y_M) is an abs max of f, then $f(x_M, y_M)$ is the **absolute max value** of f. If (x_m, y_m) is an abs min of f, then $f(x_m, y_m)$ is the **absolute min value** of f.

The extreme values of f are the abs max value & abs min value of f.

• EXTREME VALUE THEOREM (E-V-T):

- Let $f(x, y) \in C(S)$ where set $S \subset \mathbb{R}^2$ is closed & bounded. Then f attains extreme values over the set S.

• ABSOLUTE EXTREMA (PROCEDURE):

- Let $f(x, y) \in C(S)$ where set $S \subset \mathbb{R}^2$ is closed & bounded. Then to find the absolute extrema of f over S, follow this procedure:
 - * Find all critical points (CP's) of f.
 - * Sketch & identify all boundary curves (BC's) & boundary points (BP's) of S.

A boundary point is the intersection of two boundary curves.

* Discard any critical points (CP's) that are <u>not</u> in S.

* Find all points on the **boundary** of S where absolute extrema can occur (**boundary critical points (BCP's)**). To do this, find the absolute extrema on a function of <u>one variable</u> by plugging in one of the BC's of S. Sometimes it's best to **parameterize** the BC. Repeat for each BC.

- * Build a **table** by computing f for each CP, BP, and BCP.
- * The abs max value of f is the largest of all computed values in table.
- * The abs min value of f is the smallest of all computed values in table.

EX 11.7.1: Let $f(x,y) = 3x - x^3 - 3xy^2$. Find & classify all critical points of f.

EX 11.7.2: Let $g(x,y) = x \sin y$. Find & classify all critical points of g.

C2013Josh Engwer – Revised October 6, 2014

<u>EX 11.7.3</u>: Let $h(x, y) = x^6 + y^8$. Find & classify all critical points of h.

©2013 Josh Engwer – Revised October 6, 2014

 $\fbox{\textbf{EX 11.7.4:}} \quad \text{Let } f(x,y) = 3x - x^3 - 3xy^2 \text{ and set } S = \big\{ (x,y) \in \mathbb{R}^2 : -2 \le x \le 2 \text{ and } -2 \le y \le 2 \big\}.$

Find the extreme values of f over S and the points at which they occur.

EX 11.7.5: Let $g(x,y) = x^2 + xy + y^2$ and set $S = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}.$

Find the extreme values of g over S and the points at which they occur.

EX 11.7.6: Let $h(x, y) = 2 + 2x + 2y - x^2 - y^2$ and set S be the closed triangle with vertices (0, 0), (0, 8), (8, 0). Find the extreme values of h over S and the points at which they occur.