FUNCTIONS OF TWO VARIABLES: RELATIVE EXTREMA [SST 11.7]

- OPEN, CLOSED, AND BOUNDED SETS IN \mathbb{R}^{2} :
- A set $S \subseteq \mathbb{R}^{2}$ is open if S contains none of its boundary.
- A set $S \subseteq \mathbb{R}^{2}$ is closed if S contains all of its boundary.
$-\mathbb{R}^{2}$ and \emptyset (empty set) are both open and closed.
- Open disk centered at (x_{0}, y_{0}) with radius $r>0$:

$$
\mathbb{D}\left(x_{0}, y_{0} ; r\right):=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<r^{2}\right\}
$$

- Closed disk centered at $\left(x_{0}, y_{0}\right)$ with radius $r>0: \quad \overline{\mathbb{D}}\left(x_{0}, y_{0} ; r\right):=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq r^{2}\right\}$
- A set $S \subset \mathbb{R}^{2}$ is bounded if S is contained in an open disk.
- SUFFICIENT CONDITION FOR EQUALITY OF MIXED $2^{n d}$-ORDER PARTIALS:
- Let $f(x, y) \in C^{(2,2)} . \quad$ Then $f_{x y}=f_{y x}$
- CRITICAL POINTS:
- Let $f(x, y)$ be defined on an open set $S \subseteq \mathbb{R}^{2}$ such that $\left(x_{0}, y_{0}\right) \in S$.

Then $\left(x_{0}, y_{0}\right)$ is a critical point of f is either one of the following is true:
(i) $f_{x}\left(x_{0}, y_{0}\right)=0 \quad$ and $\quad f_{y}\left(x_{0}, y_{0}\right)=0$
(ii) At least one of $f_{x}\left(x_{0}, y_{0}\right)$ or $f_{y}\left(x_{0}, y_{0}\right)$ DNE

- RELATIVE MIN's, RELATIVE MAX's, SADDLE POINTS ("FIRST PRINCIPLES" DEFINITIONS):
- Let $f(x, y)$ be defined on an open set $S \subseteq \mathbb{R}^{2}$ such that $\left(x_{0}, y_{0}\right) \in S$. Then:
$\left(x_{0}, y_{0}\right)$ is a relative maximum if $f(x, y) \leq f\left(x_{0}, y_{0}\right) \quad \forall(x, y) \in \mathbb{D}\left(x_{0}, y_{0} ; r\right)$.
$\left(x_{0}, y_{0}\right)$ is a relative minimum if $f(x, y) \geq f\left(x_{0}, y_{0}\right) \quad \forall(x, y) \in \mathbb{D}\left(x_{0}, y_{0} ; r\right)$.
$\left(x_{0}, y_{0}\right)$ is a saddle point if $\exists\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{D}\left(x_{0}, y_{0} ; r\right)$ s.t. $f\left(x_{1}, y_{1}\right)>f\left(x_{0}, y_{0}\right)$ and $f\left(x_{2}, y_{2}\right)<f\left(x_{0}, y_{0}\right)$.
- RELATIVE MIN's, RELATIVE MAX's, SADDLE POINTS (2 $2^{n d}$-ORDER PARTIALS TEST):
- Let $f(x, y) \in C^{(2,2)}\left(\mathbb{D}\left(x_{0}, y_{0} ; r\right)\right)$ s.t. f has a critical point at $\left(x_{0}, y_{0}\right)$.

Form the discriminant of $f: \quad \Delta(x, y):=\operatorname{det}\left[\begin{array}{cc}f_{x x} & f_{x y} \\ f_{x y} & f_{y y}\end{array}\right]=f_{x x} f_{y y}-\left(f_{x y}\right)^{2}$
Then:
$\left(x_{0}, y_{0}\right)$ is a relative max if $\left(\Delta\left(x_{0}, y_{0}\right)>0\right.$ and $\left.f_{x x}\left(x_{0}, y_{0}\right)<0\right)$ OR $\left(\Delta\left(x_{0}, y_{0}\right)>0\right.$ and $\left.f_{y y}\left(x_{0}, y_{0}\right)<0\right)$
$\left(x_{0}, y_{0}\right)$ is a relative min if $\left(\Delta\left(x_{0}, y_{0}\right)>0\right.$ and $\left.f_{x x}\left(x_{0}, y_{0}\right)>0\right) \quad$ OR $\left(\Delta\left(x_{0}, y_{0}\right)>0\right.$ and $\left.f_{y y}\left(x_{0}, y_{0}\right)>0\right)$
$\left(x_{0}, y_{0}\right)$ is a saddle point if $\Delta\left(x_{0}, y_{0}\right)<0$
The test is inconclusive if $\Delta\left(x_{0}, y_{0}\right)=0$.
So, apply the "First Principles" definitions of rel min, rel max, and saddle point. (see above)

FUNCTIONS OF TWO VARIABLES: ABSOLUTE EXTREMA [SST 11.7]

- ABSOLUTE EXTREMA (DEFINITIONS):
- Given function $f(x, y)$:
$\left(x_{M}, y_{M}\right)$ is an absolute maximum of f if $f\left(x_{M}, y_{M}\right) \geq f(x, y) \quad \forall(x, y) \in \operatorname{Dom}(f)$
$\left(x_{m}, y_{m}\right)$ is an absolute minimum of f if $f\left(x_{m}, y_{m}\right) \leq f(x, y) \quad \forall(x, y) \in \operatorname{Dom}(f)$
If $\left(x_{M}, y_{M}\right)$ is an abs max of f, then $f\left(x_{M}, y_{M}\right)$ is the absolute max value of f.
If $\left(x_{m}, y_{m}\right)$ is an abs \min of f, then $f\left(x_{m}, y_{m}\right)$ is the absolute min value of f.
The extreme values of f are the abs max value \& abs min value of f.
- EXTREME VALUE THEOREM (E-V-T):
- Let $f(x, y) \in C(S)$ where set $S \subset \mathbb{R}^{2}$ is closed \& bounded.

Then f attains extreme values over the set S.

- ABSOLUTE EXTREMA (PROCEDURE):
- Let $f(x, y) \in C(S)$ where set $S \subset \mathbb{R}^{2}$ is closed \& bounded.

Then to find the absolute extrema of f over S, follow this procedure:

* Find all critical points (CP's) of f.
* Sketch \& identify all boundary curves (BC's) \& boundary points (BP's) of S.

A boundary point is the intersection of two boundary curves.

* Discard any critical points (CP's) that are not in S.
* Find all points on the boundary of S where absolute extrema can occur (boundary critical points (BCP's)).

To do this, find the absolute extrema on a function of one variable by plugging in one of the BC's of S.
Sometimes it's best to parameterize the BC.
Repeat for each BC.

* Build a table by computing f for each CP, BP, and BCP.
* The abs max value of f is the largest of all computed values in table.
* The abs min value of f is the smallest of all computed values in table.

EX 11.7.1: Let $f(x, y)=3 x-x^{3}-3 x y^{2}$. Find \& classify all critical points of f.

EX 11.7.2: Let $g(x, y)=x \sin y . \quad$ Find \& classify all critical points of g.

EX 11.7.3: Let $h(x, y)=x^{6}+y^{8}$. Find \& classify all critical points of h.

EX 11.7.4: Let $f(x, y)=3 x-x^{3}-3 x y^{2}$ and set $S=\left\{(x, y) \in \mathbb{R}^{2}:-2 \leq x \leq 2\right.$ and $\left.-2 \leq y \leq 2\right\}$.
Find the extreme values of f over S and the points at which they occur.

EX 11.7.5: Let $g(x, y)=x^{2}+x y+y^{2}$ and set $S=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 1\right\}$.
Find the extreme values of g over S and the points at which they occur.

EX 11.7.6: Let $h(x, y)=2+2 x+2 y-x^{2}-y^{2}$ and set S be the closed triangle with vertices $(0,0),(0,8),(8,0)$.
Find the extreme values of h over S and the points at which they occur.

