- LAGRANGE MULTIPLIERS (FUNCTIONS OF TWO VARIABLES):
- Let $f, g \in C^{(1,1)}$ s.t. $f(x, y)$ has an extremum subject to constraint $g(x, y)=k$, where $k \in \mathbb{R}$.

Then to find the extreme value(s) of f :
Solve for $x, y, \lambda: \quad\left\{\begin{array}{l}\nabla f=\lambda \nabla g \\ g(x, y)=k\end{array}\right.$
or equivalently,
STEP 1: Solve for $x, y, \lambda: \quad\left\{\begin{array}{l}f_{x}=\lambda g_{x} \\ f_{y}=\lambda g_{y} \\ g(x, y)=k\end{array}\right.$
The resulting solutions (x, y) are called the constrained critical points (CCP's) of f.
STEP 2: Build a table computing f for each constrained critical point (CCP)
If there's only one CCP, pick any other (simple) point on the constraint to compare with.
STEP 3: Compare values in the table to determine the extreme value(s) of f.

- LAGRANGE MULTIPLIERS (FUNCTIONS OF THREE VARIABLES):
- Let $f, g \in C^{(1,1,1)}$ s.t. $f(x, y, z)$ has an extremum subject to constraint $g(x, y, z)=k$, where $k \in \mathbb{R}$. Then to find the extreme value(s) of f :

Solve for $x, y, z, \lambda: \quad\left\{\begin{array}{l}\nabla f=\lambda \nabla g \\ g(x, y, z)=k\end{array}\right.$
or equivalently,
STEP 1: Solve for $x, y, z, \lambda: \quad\left\{\begin{array}{l}f_{x}=\lambda g_{x} \\ f_{y}=\lambda g_{y} \\ f_{z}=\lambda g_{z} \\ g(x, y, z)=k\end{array}\right.$
The resulting solutions (x, y, z) are called the constrained critical points (CCP's) of f.
STEP 2: Build a table computing f for each constrained critical point (CCP)
If there's only one CCP, pick any other (simple) point on the constraint to compare with.
STEP 3: Compare values in the table to determine the extreme value(s) of f.

EX 11.8.1: Using one Lagrange Multiplier λ, minimize $f(x, y)=3 x+y+10$ subject to constraint $x^{2} y=12$, where $x \geq 0$.

EX 11.8.2: Using one Lagrange Multiplier λ, maximize $f(x, y)=x^{2}-y^{2}$ subject to constraint $x^{2}+y^{2}=9$.

EX 11.8.3: Using one Lagrange Multiplier λ, minimize $f(x, y, z)=x-2 y+z$ subject to constraint $x^{2}+2 y^{2}+3 z^{2}=6$.

EX 11.8.4: Using one Lagrange Multiplier λ, maximize $f(x, y, z)=x y z$ subject to constraint $x+y+z=1$, where $y \geq 0$

EX 11.8.5: Find the largest product of positive real numbers x, y such that their sum is 60 .

EX 11.8.6: Find the smallest sum of positive real numbers x, y, z such that their product is 64 .

