DOUBLE INTEGRALS: RECTANGULAR COORDINATES [SST 12.2]

- PROPERTIES OF DOUBLE INTEGRALS:

- Let set D be a closed \& bounded region in \mathbb{R}^{2}.

Let functions $f(x, y) \& g(x, y)$ be defined on D.
Let $k \in \mathbb{R}$.
Constant Multiple Rule: $\iint_{D} k f d A=k \iint_{D} f d A$
Sum/Difference Rule: $\iint_{D}[f \pm g] d A=\iint_{D} f d A \pm \iint_{D} g d A$
Nonnegativity Rule: $f(x, y) \geq 0 \quad \forall(x, y) \in D \Longrightarrow \iint_{D} f d A \geq 0$
Dominance Rule: $f(x, y) \leq g(x, y) \quad \forall(x, y) \in D \Longrightarrow \iint_{D} f d A \leq \iint_{D} g d A$
Region Additivity Rule: $D=D_{1} \cup D_{2} \Longrightarrow \iint_{D} f d A=\iint_{D_{1}} f d A+\iint_{D_{2}} f d A$

- AREA OF A V-SIMPLE REGION D :
$-\operatorname{Area}(D):=\iint_{D} d A=\int_{\text {smallest } x \text {-value in } D}^{\text {largest } x \text {-value in } D} \int_{\text {bottom BC of } D}^{\text {top BC of } D} d y d x=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} d y d x$
- AREA OF A H-SIMPLE REGION D :

$$
-\operatorname{Area}(D):=\iint_{D} d A=\int_{\text {smallest } y \text {-value in } D}^{\text {largest } y \text {-value in } D} \int_{\text {left BC of } D}^{\text {right BC of } D} d x d y=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} d x d y
$$

- AREA OF A REGION THAT'S NEITHER V-SIMPLE NOR H-SIMPLE:
- Subdivide region into subregions each of which are V-Simple or H-Simple.
- Use the Region Additivity Rule for Double Integrals to find the area.
- VOLUME OF SOLID E BOUNDED BELOW BY $x y$-PLANE \& BOUNDED ABOVE BY SURFACE $z=f(x, y)$:
- Volume $(E)=\iint_{D} f d A \quad$ (Use above to write as iterated integrals)
- SETTING UP A DOUBLE INTEGRAL TO FIND AREA OR VOLUME:
- Sketch region D and label all BC's \& BP's.
- Determine whether D is V-Simple, H-Simple, Both, or Neither.
* If D is neither V-Simple nor H-Simple, subdivide region.
- Write appropriate iterated double integral(s). (see above)
- INTERCHANING THE ORDER OF INTEGRATION OF A DOUBLE INTEGRAL:
- Sketch the region of integration (label it D) and label all BC's \& BP's.
- Determine whether D is V-Simple, H-Simple, Both, or Neither.
* If D is neither V-Simple nor H-Simple, subdivide region.
- Write appropriate iterated double integral(s) using the reversed order of integration. (see above)

EX 12.2.1: Compute $I=\int_{0}^{\pi / 2} \int_{0}^{\sin x} e^{y} \cos x d y d x$.

EX 12.2.2: Compute $I=\iint_{D}(2 x+3 y) d A$, where region $D=\left\{(x, y) \in \mathbb{R}^{2}: 0 \leq x \leq 1,0 \leq y \leq 2\right\}$

EX 12.2.3: Compute $I=\iint_{D} \frac{\sin x}{x} d A$, where D is the triangle bounded by lines $y=0, x=\pi$, and $y=x$.

EX 12.2.4: Setup double integral(s) for the area of the region D bounded by curves $x=2-y^{2}$ and $y=-x$.

EX 12.2.5: Setup double integral(s) for the volume of the solid E below surface $z=6-2 x^{2}-3 y^{2}$ and above plane $z=0$.

EX 12.2.6: Setup double integral(s) for the volume of solid E bounded by the planes $x=0, y=0, z=0$ and $z=7-3 x-2 y$.

EX 12.2.7: Let $I=\int_{0}^{1} \int_{x}^{2-x} f(x, y) d y d x$.
Sketch the region of integration \& write an equivalent iterated double integral with the order of integration reversed.

EX 12.2.8: Let $I=\int_{0}^{3} \int_{y / 3}^{\sqrt{4-y}} f(x, y) d x d y$.
Sketch the region of integration \& write an equivalent iterated double integral with the order of integration reversed.

EX 12.2.9: Compute $I=\int_{0}^{\pi / 4} \int_{0}^{\pi / 2} x \cos (2 x+y) d y d x$.

