- SPECIAL POLAR CURVES:
$\left(a \neq 0, b \neq 0, k \neq 0, n \in \mathbb{Z}_{+}\right) \quad \mathbb{Z}_{+} \equiv$ The set of all positive integers.

POLAR CURVE	PROTOTYPE	REMARK(S)
Lines (Rays) thru Pole	$\theta=k$	Always Graph!
Horizontal Lines (Off-Pole)	$r=a \csc \theta$	Always convert!
Vertical Lines (Off-Pole)	$r=a \sec \theta$	Always convert!
Circles Centered at Pole	$r=k$	Always Graph!
Circles Containing Pole	$r=a \cos \theta, r=a \sin \theta$	Always Graph!
Cardioids	$r=a \pm a \cos \theta, r=a \pm a \sin \theta$	Always Graph!
Limaçons	$r=b \pm a \cos \theta, r=b \pm a \sin \theta$	Always Graph!
Roses	$r=a \cos (n \theta), r=a \sin (n \theta)$	Always Graph!

- GRAPHING POLAR CURVES (PROCEDURE):

1. Graph $r=f(\theta)$ on the usual $x y$-plane where $x=\theta \& y=r \quad$ (Rectangular Plot)

Use special angles for $\theta:\left\{0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3 \pi}{4}, \pi, \frac{5 \pi}{4}, \frac{3 \pi}{2}, \frac{7 \pi}{4}, 2 \pi\right\}$
If $f(\theta)$ has a trig fcn, set its argument to these angles \& solve for θ
2. Use the rectangular plot of $r=f(\theta)$ to trace the polar graph of $r=f(\theta) \quad$ (Polar Plot)

IMPORTANT: Except for equations of lines, "connect the dots" using smooth curves, not line segments!

- INTERSECTION OF TWO POLAR CURVES $r=f(\theta) \& r=g(\theta)$:
- Solving $f(\theta)=g(\theta)$ for θ finds some, but not necessarily all, intersection points.
- In particular, intersections at the pole (origin) are nearly impossible to find algebraically because the pole has no single representation in polar coordinates that satisfies both $r=f(\theta) \& r=g(\theta)$.
- Therefore, to find all intersection points, GRAPH BOTH CURVES!

- AREA OF A RADIALLY SIMPLE (r-SIMPLE) POLAR REGION:

- Let D be a r-simple region s.t. $D=\left\{(r, \theta) \in \mathbb{R}^{2}: 0 \leq g_{1}(\theta) \leq r \leq g_{2}(\theta), \alpha \leq \theta \leq \beta\right.$ s.t. $\left.0 \leq \beta-\alpha \leq 2 \pi\right\}$. Then:

$$
\operatorname{Area}(D):=\iint_{D} d A=\int_{\text {Smallest } \theta \text {-value in } D}^{\text {Largest } \theta \text {-value in } D} \int_{\text {Inner BC of } D}^{\text {Outer BC of } D} r d r d \theta=\int_{\alpha}^{\beta} \int_{g_{1}(\theta)}^{g_{2}(\theta)} r d r d \theta
$$

- AREA OF A QUASI-RADIALLY SIMPLE (QUASI- r-SIMPLE) POLAR REGION:
- Let D be a r-simple region s.t. $D=\left\{(r, \theta) \in \mathbb{R}^{2}: 0 \leq g_{1}(\theta) \leq r \leq g_{2}(\theta), \alpha \leq \theta \leq \beta\right.$ for $g_{1}(\theta), \gamma \leq \theta \leq \delta$ for $\left.g_{2}(\theta)\right\}$. Moreover, let BP's $\left(g_{1}(\alpha), \alpha\right),\left(g_{2}(\gamma), \gamma\right)$ share one ray \& BP's $\left(g_{1}(\beta), \beta\right),\left(g_{2}(\delta), \delta\right)$ share another ray. Then:

$$
\begin{gathered}
\text { Area }(D)=\int_{\text {Smallest } \theta \text {-value for Outer BC }}^{\text {Largest } \theta \text {-value for Outer BC }} \int_{\text {Pole }}^{\text {Outer BC }} r d r d \theta-\int_{\text {Smallest } \theta \text {-value for Inner BC }}^{\text {Largest } \theta \text {-value for Inner BC }} \int_{\text {Pole }}^{\text {Inner BC }} r d r d \theta \\
\Longrightarrow \operatorname{Area}(D)=\int_{\gamma}^{\delta} \int_{0}^{g_{2}(\theta)} r d r d \theta-\int_{\alpha}^{\beta} \int_{0}^{g_{1}(\theta)} r d r d \theta
\end{gathered}
$$

- HOW TO SUBDIVIDE A POLAR REGION THAT'S NEITHER r-SIMPLE NOR QUASI- r-SIMPLE:
- Construct a ray that contains at least one BP that separates two outer BC's (or two inner BC's).
- Repeat this as necessary.
- CONVERTING A DOUBLE INTEGRAL FROM RECTANGULAR TO POLAR COORDINATES:
- Let $f(x, y) \in C(D)$ where D is a region that is either r-simple or quasi- r-simple (or can be subdivided). Then:

$$
\iint_{D} f(x, y) d A=\iint_{D} f(r \cos \theta, r \sin \theta) r d r d \theta
$$

EX 12.3.1: Using polar coordinates, compute $I=\iint_{D} y^{2} d A$, where region $D=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 3\right\}$.

EX 12.3.2: Using polar coordinates, compute $I=\iint_{D}\left(x^{2}+y^{2}\right) d A$, where D is the disk $x^{2}+y^{2} \leq 4$ in Quadrant I.
(a) Graph the polar curve $r=2+2 \cos \theta$.
(b) Using double integral(s), find the area of the region enclosed by the polar curve $r=2+2 \cos \theta$.
(a) Graph the polar curve $r=3 \sin (2 \theta)$.
(b) Using double integral(s), find the area of the region enclosed by the polar curve $r=3 \sin (2 \theta)$.
(a) Graph the polar curves $r=1$ and $r=1+\cos \theta$.
(b) Using double integral(s), find the area of the region inside both polar curves $r=1$ and $r=1+\cos \theta$.

EX 12.3.6: Using polar coordinates, compute $I=\int_{0}^{2} \int_{0}^{\sqrt{4-x^{2}}} x d y d x$.

EX 12.3.7: Using polar coordinates, compute $I=\int_{0}^{3} \int_{-\sqrt{9-y^{2}}}^{\sqrt{9-y^{2}}} e^{x^{2}+y^{2}} d x d y$.

EX 12.3.8: Using double integral(s), find the volume of the solid E bounded by the paraboloid $z=4-x^{2}-y^{2}$ and $x y$-plane.

