- SURFACE AREA OF PORTION OF SURFACE $z=f(x, y)$:
- Let $f(x, y) \in C^{(1,1)}(D)$ in a region $D \subset \mathbb{R}^{2}$ of the $x y$-plane.

Let S be the portion of the surface $z=f(x, y)$ that lies directly over D.
(Region D is also known as the projection of S onto the $x y$-plane.)
Then:

$$
\text { Surface } \operatorname{Area}(S):=\iint_{S} d S=\iint_{D} \sqrt{1+\left[f_{x}\right]^{2}+\left[f_{y}\right]^{2}} d A=\iint_{D} \sqrt{1+\left[\frac{\partial f}{\partial x}\right]^{2}+\left[\frac{\partial f}{\partial y}\right]^{2}} d A
$$

- As usual, sketch the region D to help determine the limits of integration.
- REMARK: The resulting double integral may be hard to compute.
* If so, rewrite double integral in polar coordinates.
- SURFACE AREA OF PORTION OF SURFACE $y=g(x, z)$ [OPTIONAL]:
- Let $g(x, z) \in C^{(1,1)}\left(D^{[x z]}\right)$ in a region $D^{[x z]} \subset \mathbb{R}^{2}$ of the $x z$-plane.

Let S be the portion of the surface $y=g(x, z)$ that lies directly over $D^{[x z]}$.
(Region $D^{[x z]}$ is also known as the projection of S onto the $x z$-plane.)
Then:

$$
\operatorname{Surface} \operatorname{Area}(S):=\iint_{S} d S=\iint_{D^{[x z]}} \sqrt{1+\left[g_{x}\right]^{2}+\left[g_{z}\right]^{2}} d A=\iint_{D^{[x z]}} \sqrt{1+\left[\frac{\partial g}{\partial x}\right]^{2}+\left[\frac{\partial g}{\partial z}\right]^{2}} d A
$$

- SURFACE AREA OF PORTION OF SURFACE $x=h(y, z)$ [OPTIONAL]:
- Let $h(y, z) \in C^{(1,1)}\left(D^{[y z]}\right)$ in a region $D^{[y z]} \subset \mathbb{R}^{2}$ of the $y z$-plane.

Let S be the portion of the surface $x=h(y, z)$ that lies directly over $D^{[y z]}$.
(Region $D^{[y z]}$ is also known as the projection of S onto the $y z$-plane.)
Then:

$$
\operatorname{Surface} \operatorname{Area}(S):=\iint_{S} d S=\iint_{D[y z]} \sqrt{1+\left[h_{y}\right]^{2}+\left[h_{z}\right]^{2}} d A=\iint_{D[y z]} \sqrt{1+\left[\frac{\partial h}{\partial y}\right]^{2}+\left[\frac{\partial h}{\partial z}\right]^{2}} d A
$$

EX 12.4.1: Setup a double integral for the surface area of $z=e^{-x} \sin y$ over the disk $D=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 5\right\}$.

EX 12.4.2: Using double integral(s), compute the surface area of the plane $2 x+2 y-z=0$ over the triangular region in the $x y$-plane with vertices $(0,0,0),(0,4,0),(2,3,0)$.

EX 12.4.3: Using double integral(s), compute the surface area of the portion of the paraboloid $z=x^{2}+y^{2}$ that lies inside the sphere $x^{2}+y^{2}+z^{2}=2$.

EX 12.4.4: Using double integral(s), find a formula for the surface area of the cone $z=\sqrt{x^{2}+y^{2}}$ between the planes $z=0$ and $z=h$, where $h>0$.

