TRIPLE INTEGRALS IN RECTANGULAR COORDINATES [SST 12.5]

- PROPERTIES OF TRIPLE INTEGRALS:
- Let set $E \subset \mathbb{R}^{3}$ be a closed $\&$ bounded solid in $x y z$-space.

Let functions $f(x, y, z) \& g(x, y, z)$ be defined $\&$ continuous on E.
Let $k \in \mathbb{R}$.
Constant Multiple Rule: $\iiint_{E} k f d V=k \iiint_{E} f d V$
Sum/Difference Rule: $\iiint_{E}[f \pm g] d V=\iiint_{E} f d V \pm \iiint_{E} g d V$
Nonnegativity Rule: $f(x, y, z) \geq 0 \quad \forall(x, y, z) \in E \Longrightarrow \iiint_{E} f d V \geq 0$
Dominance Rule: $f(x, y, z) \leq g(x, y, z) \quad \forall(x, y, z) \in E \Longrightarrow \iiint_{E} f d V \leq \iiint_{E} g d V$
Solid Additivity Rule: $E=E_{1} \cup E_{2} \Longrightarrow \iiint_{E} f d V=\iiint_{E_{1}} f d V+\iiint_{E_{2}} f d V$

- VOLUME OF A (RECTANGULAR) BOX USING TRIPLE INTEGRALS:
$-\operatorname{Volume}(E):=\iiint_{E} d V=\int_{a}^{b} \int_{c}^{d} \int_{p}^{q} d z d y d x=\int_{c}^{d} \int_{a}^{b} \int_{p}^{q} d z d x d y=\int_{a}^{b} \int_{p}^{q} \int_{c}^{d} d y d z d x$
$=\int_{p}^{q} \int_{a}^{b} \int_{c}^{d} d y d x d z=\int_{c}^{d} \int_{p}^{q} \int_{a}^{b} d x d z d y=\int_{p}^{q} \int_{c}^{d} \int_{a}^{b} d x d y d z$

- VOLUME OF A z-SIMPLE SOLID USING TRIPLE INTEGRALS:

Let $E \subset \mathbb{R}^{3}$ be a closed $\&$ bounded solid in $x y z$-space.
Moreover, let E be z-simple with top boundary surface $z=f_{2}(x, y) \&$ bottom boundary surface $z=f_{1}(x, y)$.
Finally, let region D be the projection of solid E onto the $x y$-plane.
$-\operatorname{Volume}(E):=\iiint_{E} d V=\iint_{D}\left[\int_{\mathrm{btm} \mathrm{BS} \text { in } E}^{\mathrm{top} \mathrm{BS} \text { in } E} d z\right] d A=\iint_{D}\left[\int_{f_{1}(x, y)}^{f_{2}(x, y)} d z\right] d A$

- REMARK: BS \equiv Boundary Surface
- VOLUME OF A y-SIMPLE SOLID USING TRIPLE INTEGRALS
[OPTIONAL]:
Let $E \subset \mathbb{R}^{3}$ be a closed \& bounded solid in $x y z$-space.
Moreover, let E be y-simple with right boundary surface $y=g_{2}(x, z) \&$ bottom boundary surface $y=g_{1}(x, z)$.
Finally, let region D be the projection of solid E onto the $x z$-plane.
$-\operatorname{Volume}(E):=\iiint_{E} d V=\iint_{D}\left[\int_{\text {left BS in } E}^{\text {right BS in } E} d y\right] d A=\iint_{D}\left[\int_{g_{1}(x, z)}^{g_{2}(x, z)} d y\right] d A$
- REMARK: BS \equiv Boundary Surface
- VOLUME OF A x-SIMPLE SOLID USING TRIPLE INTEGRALS
[OPTIONAL]:
Let $E \subset \mathbb{R}^{3}$ be a closed \& bounded solid in $x y z$-space.
Moreover, let solid E be x-simple with front boundary surface $x=h_{2}(y, z) \&$ back boundary surface $x=h_{1}(y, z)$.
Finally, let region D be the projection of solid E onto the $y z$-plane.
$-\operatorname{Volume}(E):=\iiint_{E} d V=\iint_{D}\left[\int_{\text {back BS in } E}^{\text {front BS in } E} d x\right] d A=\iint_{D}\left[\int_{h_{1}(y, z)}^{h_{2}(y, z)} d x\right] d A$
- REMARK: BS \equiv Boundary Surface

EX 12.5.1: Compute $I=\int_{0}^{1} \int_{0}^{2} \int_{0}^{3} d x d y d z$.

EX 12.5.2: Compute $I=\int_{0}^{1} \int_{\sqrt{x}}^{\sqrt{1+x}} \int_{0}^{x y} \frac{z}{y} d z d y d x$.

EX 12.5.3: Compute $I=\iiint_{E} 24 x y^{2} z^{3} d V$, where $E=\left\{(x, y, z) \in \mathbb{R}^{3}: 2 \leq x \leq 3,-1 \leq y \leq 1,0 \leq z \leq 2\right\}$.

EX 12.5.4: Compute $I=\iiint_{E} x y d V$, where E is the solid in the first octant bounded by hemisphere $z=\sqrt{9-x^{2}-y^{2}}$ and the coordinate planes $(x=0, y=0, z=0)$.

EX 12.5.5: Using a triple integral, find the volume of the solid E bounded by paraboloid $z=9-9 x^{2}-9 y^{2}$ and plane $z=3$.

EX 12.5.6: Using a triple integral, find the volume of the solid E bounded above by the surface $x^{2}+y^{2}+z^{3}=9$ and below by the plane $z=0$.

