TRIPLE INTEGRALS: CYLINDRICAL \& SPHERICAL COORDINATES [SST 12.7]

- SURFACES WITH SIMPLE REPRESENTATION IN CYLINDRICAL COORDINATES:

SURFACE	CYLINDRICAL FORM
z-simple (Circular) Cylinder	$r=k$
z-simple (Circular) Cone	$r=k z$
z-simple (Circular) Paraboloid	$r^{2}=k z$
z-simple (Circular) Hyperboloid of 1 Sheet	$r^{2}=z^{2}+1$
z-simple (Circular) Hyperboloid of 2 Sheets	$r^{2}=z^{2}-1$

- RECTANGULAR TO CYLINDRICAL COORDINATES:

$$
\begin{gathered}
x=r \cos \theta \\
y=r \sin \theta \\
z=z
\end{gathered}
$$

Let $f(x, y, z) \in C(E)$, where solid $E \subset \mathbb{R}^{3}$ is z-simple s.t. its proj. D is r-simple.

$$
\begin{aligned}
\iiint_{E} f d V \quad \stackrel{C Y}{=} L & \int_{\text {Smallest } \theta \text {-value in } D}^{\text {Largest } \theta \text {-value in } D} \int_{\text {Inner BC of } D}^{\text {Outer BC of } D} \int_{\text {Btm BS in cyl. form }}^{\text {Top BS in cyl. form }} f r d z d r d \theta \\
= & \int_{\alpha}^{\beta} \int_{g_{1}(\theta)}^{g_{2}(\theta)} \int_{f_{1}(r \cos \theta, r \sin \theta)}^{f_{2}(r \cos \theta, r \sin \theta)} f(r \cos \theta, r \sin \theta, z) r d z d r d \theta
\end{aligned}
$$

REMARK: If region D only has an outer BC, then the inner BC is the pole $(r=0)$.
REMARK: Always integrate in the order $d z d r d \theta$.

- SURFACES WITH SIMPLE REPRESENTATION IN SPHERICAL COORDINATES:

SURFACE	SPHERICAL FORM	REMARKS (IF ANY)
Sphere	$\rho=k$	$k>0$
z-simple (Circular) Half-Cone	$\phi=k$	$k \neq \pi / 2$
$x y$-plane	$\phi=\pi / 2$	
Plane $z=k$	$\rho=k \sec \phi$	
Plane $y=k$	$\rho=k \csc \phi \csc \theta$	
Plane $x=k$	$\rho=k \csc \phi \sec \theta$	

- RECTANGULAR TO SPHERICAL COORDINATES: $\quad(0 \leq \phi \leq \pi)$

$$
\begin{gathered}
x=\rho \sin \phi \cos \theta \\
y=\rho \sin \phi \sin \theta \\
z=\rho \cos \phi
\end{gathered}
$$

Let $f(x, y, z) \in C(E)$ s.t. $E \subset \mathbb{R}^{3}$ is a closed \& bounded solid. Then:

$$
\begin{aligned}
& \iiint_{E} f d V \stackrel{S P H}{=} \int_{\text {Smallest } \theta \text {-val in } E}^{\text {Largest } \theta \text {-val in } E} \int_{\text {Smallest } \phi \text {-val in } E}^{\text {Largest } \phi \text {-val in } E} \int_{\text {Inside BS of } E}^{\text {Outside BS of } E} f \rho^{2} \sin \phi d \rho d \phi d \theta \\
& =\iiint_{E} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^{2} \sin \phi d \rho d \phi d \theta \\
& \text { - OR EQUVIALENTLY - } \\
& \iiint_{E} f d V \stackrel{S P H}{=} \int_{\text {Smallest } \phi \text {-val in } E}^{\text {Largest } \phi \text {-val in } E} \int_{\text {Smallest } \theta \text {-val in } E}^{\text {Largest } \theta \text {-val in } E} \int_{\text {Inside } \operatorname{BS} \text { of } E}^{\text {Outside } \operatorname{BS} \text { of } E} f \rho^{2} \sin \phi d \rho d \theta d \phi \\
& =\iiint_{E} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^{2} \sin \phi d \rho d \theta d \phi
\end{aligned}
$$

REMARK: Setting up iterated triple integral is harder since projection of E on $x y$-plane is useless! REMARK: Always integral in either $d \rho d \phi d \theta$ or $d \rho d \theta d \phi$ order.

EX 12.7.1: Using cylindrical coordinates, compute $I=\iiint_{E} \sqrt[3]{x^{2}+y^{2}} d V$, where E is the solid half-cylinder $\left\{\begin{array}{c}x^{2}+y^{2} \leq 1 \\ y \geq 0 \\ 1 \leq z \leq 3\end{array}\right\}$.

EX 12.7.2: Using cylindrical coordinates, compute $I=\iiint_{E} z^{2} d V$,
where E is the solid bounded by the cylinders $\left\{\begin{array}{c}x^{2}+y^{2}=1 \\ 0 \leq z \leq 2\end{array}\right\} \&\left\{\begin{array}{c}x^{2}+y^{2}=4 \\ 0 \leq z \leq 2\end{array}\right\}$.

EX 12.7.3: Using cylindrical coordinates, compute $I=\iiint_{E} d V$, where E is the solid bounded above by plane $z=3 \&$ below by paraboloid $2 z=x^{2}+y^{2}$.

EX 12.7.4: Using spherical coordinates, compute $I=\iiint_{E} \frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}} d V$,
where E is the right solid hemisphere $\left\{\begin{array}{c}x^{2}+y^{2}+z^{2} \leq 1 \\ y \geq 0\end{array}\right\}$.

EX 12.7.5: Using spherical coordinates, compute $I=\iiint_{E} z d V$, where E is the solid bounded above by plane $z=3 \&$ below by the half-cone $z=\sqrt{x^{2}+y^{2}}$.

