- LINE INTEGRAL OF A SCALAR FIELD:
- Given smooth curve $C:\left\{\begin{array}{l}x=x(t) \\ y=y(t) \\ t \in[a, b]\end{array}\right.$ and continuous scalar field $f(x, y)$

Then the line integral of f over curve C is defined to be

$$
\begin{aligned}
& \int_{C} f(x, y) d s:=\int_{\text {Starting } t \text {-value in } C}^{\text {Ending } t \text {-value in } C} f[x(t), y(t)] \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} d t=\int_{a}^{b} f[x(t), y(t)] \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} d t \\
& \qquad \int_{C} f(x, y) d x=\int_{\text {Starting } t \text {-value in } C}^{\text {Ending } t \text {-value in } C} f[x(t), y(t)] x^{\prime}(t) d t=\int_{a}^{b} f[x(t), y(t)] x^{\prime}(t) d t \\
& \int_{C} f(x, y) d y=\int_{\text {Starting } t \text {-value in } C}^{\text {Ending } t \text {-value in } C} f[x(t), y(t)] y^{\prime}(t) d t=\int_{a}^{b} f[x(t), y(t)] y^{\prime}(t) d t \\
& \text { - Given smooth curve } \Gamma:\left\{\begin{array}{l}
x=x(t) \\
y=y(t) \\
z=z(t) \\
t \in[a, b]
\end{array} \text { and continuous scalar field } f(x, y, z) .\right.
\end{aligned}
$$

Then the line integral of f over curve Γ is defined to be

$$
\begin{aligned}
& \int_{\Gamma} f(x, y, z) d s:=\int_{a}^{b} f[x(t), y(t), z(t)] \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}+\left[z^{\prime}(t)\right]^{2}} d t \\
& \int_{\Gamma} f(x, y, z) d x=\int_{a}^{b} f[x(t), y(t), z(t)] x^{\prime}(t) d t \\
& \int_{\Gamma} f(x, y, z) d y=\int_{a}^{b} f[x(t), y(t), z(t)] y^{\prime}(t) d t \\
& \int_{\Gamma} f(x, y, z) d z=\int_{a}^{b} f[x(t), y(t), z(t)] z^{\prime}(t) d t
\end{aligned}
$$

- LINE INTEGRAL OF A VECTOR FIELD:

- Let vector function $\overrightarrow{\mathbf{R}}(t)=\langle x(t), y(t)\rangle$ trace out a smooth curve C in \mathbb{R}^{2}.

Let vector field $\overrightarrow{\mathbf{F}}(x, y)=\langle u(x, y), v(x, y)\rangle$ be continuous on C.
Then the line integral of $\overrightarrow{\mathbf{F}}$ along C is defined by

$$
\int_{C} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{R}}:=\int_{C}[u(x, y) d x+v(x, y) d y]
$$

where $d \overrightarrow{\mathbf{R}}=\langle d x, d y\rangle$

- Let vector function $\overrightarrow{\mathbf{R}}(t)=\langle x(t), y(t), z(t)\rangle$ trace out a smooth curve Γ in \mathbb{R}^{3}.

Let vector field $\overrightarrow{\mathbf{F}}(x, y, z)=\langle u(x, y, z), v(x, y, z), w(x, y, z)\rangle$ be continuous on Γ.
Then the line integral of $\overrightarrow{\mathbf{F}}$ along Γ is defined by

$$
\int_{\Gamma} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{R}}:=\int_{\Gamma}[u(x, y, z) d x+v(x, y, z) d y+w(x, y, z) d z]
$$

where $d \overrightarrow{\mathbf{R}}=\langle d x, d y, d z\rangle$

- MASS OF A THIN WIRE: Mass $=\int_{C} \rho(x, y, z) d s$, where wire is in the shape of curve C and has density $\rho(x, y, z)$.
- WORK AS A LINE INTEGRAL: Work $=\int_{\Gamma} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{R}}$, where $\overrightarrow{\mathbf{F}}$ is a force field and object is moved along curve Γ.

EX 13.2.1: Compute the line integral $\int_{C} \frac{1}{x+1} d s$, where curve $C:\left\{\begin{array}{c}x=2 t \\ y=t \\ 0 \leq t \leq 1\end{array}\right.$

EX 13.2.2: Compute the line integral $\int_{\Gamma} \frac{y^{2}}{x^{3}} d s$, where curve $\Gamma:\left\{\begin{array}{c}x=2 t \\ y=t^{4} \\ t \in[0,1]\end{array}\right.$

EX 13.2.3: Compute $\int_{C}\left(-x y^{2} d x+x^{2} d y\right)$, where C is the path from $(-1,1)$ to $(0,1)$ along line $y=1$ and then from $(0,1)$ to $(1,0)$ along quarter-circle $x^{2}+y^{2}=1$.

EX 13.2.4: Compute $\int_{\Gamma}(-y d x+x d y+x z d z)$, where curve $\Gamma:\left\{\begin{array}{c}x=\cos t \\ y=\sin t \\ z=t \\ t \in[0,2 \pi]\end{array}\right.$

EX 13.2.5: Compute $\int_{C} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{R}}$, where $\overrightarrow{\mathbf{F}}(x, y)=\langle 5 x+y, x\rangle$ and C is the curve traced by $\overrightarrow{\mathbf{R}}(t)=\left\langle t^{2},-t\right\rangle$ for $0 \leq t \leq 1$.

EX 13.2.6: Find the work done by the force field $\overrightarrow{\mathbf{F}}(x, y, z)=\left\langle 2 x y, x^{2}+2, y\right\rangle$ on an object moving along Γ, where Γ is the line segment from $(1,0,2)$ to $(3,4,1)$.
(C)2013 Josh Engwer - Revised November 13, 2014

EX 13.2.7: Find the total mass of a thin wire with density $\rho(x, y, z)=3 x y z$ in the shape of curve $C:\left\{\begin{array}{c}x=2 t \\ y=t^{2} \\ z=\frac{1}{3} t^{3} \\ t \in[0,2]\end{array}\right.$

