GRADIENT FIELDS, SCALAR POTENTIALS, PATH INDEPENDENCE [SST 13.3]

• GRADIENT FIELD (CONSERVATIVE VECTOR FIELD):

 $\vec{\mathbf{F}}$ is a gradient field $\iff \vec{\mathbf{F}}$ is conservative $\iff \vec{\mathbf{F}} = \nabla f$ for some scalar field $f \iff f$ is a scalar potential for $\vec{\mathbf{F}}$

• FUNDAMENTAL THEOREM OF CALCULUS (FTC):

Let [a, b] be a closed interval traced out by x. In other words, $x \in [a, b]$. Let scalar function $f \in C^1[a, b]$. Then

$$\int_{a}^{b} f'(x) \ dx \stackrel{FTC}{=} f(b) - f(a)$$

• FUNDAMENTAL THEOREM FOR LINE INTEGRALS (FTLI):

Let Γ be a piecewise smooth curve traced out by $\vec{\mathbf{R}}(t)$ for $t \in [a, b]$. Let scalar field $f \in C^1(\Gamma)$. Then

$$\int_{\Gamma} \nabla f \cdot d\vec{\mathbf{R}} \stackrel{FTLI}{=} f\left[\vec{\mathbf{R}}(b)\right] - f\left[\vec{\mathbf{R}}(a)\right]$$

• CROSS-PARTIALS TEST FOR A GRADIENT FIELD IN \mathbb{R}^2 :

Let $D \in \mathbb{R}^2$ be a simply-connected region on the *xy*-plane. Let vector field $\vec{\mathbf{F}} \in C^{(1,1)}(D)$ s.t. $\vec{\mathbf{F}}(x,y) = \langle M(x,y), N(x,y) \rangle$. Then:

$$\vec{\mathbf{F}}$$
 is conservative $\iff \vec{\mathbf{F}}$ is a gradient field $\iff \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$

• CURL TEST FOR A GRADIENT FIELD IN \mathbb{R}^3 :

Let $E \in \mathbb{R}^3$ be a simply-connected solid in *xyz*-space.

Let vector field $\vec{\mathbf{F}} \in C^{(1,1,1)}(E)$ s.t. $\vec{\mathbf{F}}(x,y,z) = \langle M(x,y,z), N(x,y,z), P(x,y,z) \rangle$. Then:

 $\vec{\mathbf{F}}$ is conservative $\iff \vec{\mathbf{F}}$ is a gradient field $\iff \nabla \times \vec{\mathbf{F}} = \vec{\mathbf{0}}$

• PATH INDEPENDENCE:

Let S be an open connected set in either \mathbb{R}^2 or \mathbb{R}^3 .

Then line integral $\int_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{R}}$ is independent of path in S if for any two points $P, Q \in S$, the line integral along every piecewise smooth curve in S from P to Q has the same value.

• EQUIVALENT CONDITIONS FOR PATH INDEPENDENCE:

Let S be an open connected set in either \mathbb{R}^2 or \mathbb{R}^3 .

Let vector field $\vec{\mathbf{F}}$ be continuous on S.

Then the following are equivalent (TFAE):

- (i) $\vec{\mathbf{F}}$ is a gradient field on S. i.e. $\vec{\mathbf{F}} = \nabla f$ for some scalar potential f.
- (ii) $\oint \vec{\mathbf{F}} \cdot d\vec{\mathbf{R}} = 0$ for every piecewise smooth closed curve C in S.
- (iii) $\int_{-\infty} \vec{\mathbf{F}} \cdot d\vec{\mathbf{R}}$ is independent of path within S.

• SIMPLER PATH CHOICES FOR PATH INDEPENDENT LINE INTEGRALS:

Suppose the path Γ for $\int_{\Gamma} \vec{\mathbf{F}} \cdot d\vec{\mathbf{R}}$ starts at point $P(x_0, y_0)$, ends at point $Q(x_1, y_1)$, and is too "complicated."

Moreover, suppose finding a scalar potential for $\vec{\mathbf{F}}$ is too tedious or not possible (due to a nonelementary integral.)

- A simpler path Γ^* is the straight line path from P to Q: $\vec{\mathbf{R}}^*(t) := \langle x_0 + (x_1 x_0)t, y_0 + (y_1 y_0)t \rangle$ for $t \in [0, 1]$.
- A simpler path Γ^* is the union of one horizontal path & one vertical path from P to Q: $\Gamma^* = \Gamma^*_{HL} \cup \Gamma^*_{VL}$ where

$$\vec{\mathbf{R}}_{HL}^{*}(t) := \langle x_0 + (x_1 - x_0)t, y_0 \rangle \text{ for } t \in [0, 1] \text{ and } \vec{\mathbf{R}}_{VL}^{*}(t) := \langle x_1, y_0 + (y_1 - y_0)t \rangle \text{ for } t \in [0, 1]$$

--- OR ----

 $\vec{\mathbf{R}}_{VL}^{*}(t) := \langle x_0, y_0 + (y_1 - y_0)t \rangle \text{ for } t \in [0, 1] \text{ and } \vec{\mathbf{R}}_{HL}^{*}(t) := \langle x_0 + (x_1 - x_0)t, y_1 \rangle \text{ for } t \in [0, 1]$

Corresponding simpler paths apply for three dimensions.

^{©2013} Josh Engwer – Revised November 15, 2014

EX 13.3.1: Let vector field $\vec{\mathbf{F}}(x,y) = \langle y^2, 2xy - 3 \rangle$ and C be any smooth path from P(0,0) to Q(2,-1).

(a) Verify that $\vec{\mathbf{F}}$ is conservative. (b) Find a scalar potential f for $\vec{\mathbf{F}}$. (c) Compute $I = \int_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{R}}$.

©2013 Josh Engwer – Revised November 15, 2014

EX 13.3.2: Let vector field $\vec{\mathbf{F}}(x, y, z) = \langle yze^{xy}, xze^{xy}, e^{xy} \rangle$ and Γ be any smooth path from P(7, 0, 2) to Q(0, 8, 12).

(a) Verify that $\vec{\mathbf{F}}$ is a gradient field. (b) Find a scalar potential f for $\vec{\mathbf{F}}$. (c) Compute $I = \int_{\Gamma} \vec{\mathbf{F}} \cdot d\vec{\mathbf{R}}$.

<u>EX 13.3.3</u>: Let C be the path traced by $\vec{\mathbf{R}}(t) = \langle 2\sin\left(\frac{\pi t}{2}\right)\cos(\pi t), \arcsin t \rangle$ for $0 \le t \le 1$.

(a) Verify that line integral $I = \int_C \left[(\sin y) \, dx + (3 + x \cos y) \, dy \right]$ is independent of path (IoP).

(b) Compute line integral I without finding a scalar potential.

<u>EX 13.3.4</u>: Let Γ be the path traced by $\vec{\mathbf{R}}(t) = \langle t, t^2, t^4 \rangle$ for $0 \le t \le 1$.

(a) Verify that line integral $I = \int_{\Gamma} \left[(4xe^z) dx + (\cos y) dy + (2x^2e^z) dz \right]$ is independent of path (IoP).

(b) Compute line integral I without finding a scalar potential.