GRADIENT FIELDS, SCALAR POTENTIALS, PATH INDEPENDENCE [SST 13.3]

- GRADIENT FIELD (CONSERVATIVE VECTOR FIELD):
$\overrightarrow{\mathbf{F}}$ is a gradient field $\Longleftrightarrow \overrightarrow{\mathbf{F}}$ is conservative $\Longleftrightarrow \overrightarrow{\mathbf{F}}=\nabla f$ for some scalar field $f \Longleftrightarrow f$ is a scalar potential for $\overrightarrow{\mathbf{F}}$
- FUNDAMENTAL THEOREM OF CALCULUS (FTC):

Let $[a, b]$ be a closed interval traced out by x. In other words, $x \in[a, b]$.
Let scalar function $f \in C^{1}[a, b]$. Then

$$
\int_{a}^{b} f^{\prime}(x) d x \stackrel{F T C}{=} f(b)-f(a)
$$

- FUNDAMENTAL THEOREM FOR LINE INTEGRALS (FTLI):

Let Γ be a piecewise smooth curve traced out by $\overrightarrow{\mathbf{R}}(t)$ for $t \in[a, b]$.
Let scalar field $f \in C^{1}(\Gamma)$. Then

$$
\int_{\Gamma} \nabla f \cdot d \overrightarrow{\mathbf{R}}^{F \stackrel{F T L I}{=}} f[\overrightarrow{\mathbf{R}}(b)]-f[\overrightarrow{\mathbf{R}}(a)]
$$

- CROSS-PARTIALS TEST FOR A GRADIENT FIELD IN \mathbb{R}^{2} :

Let $D \in \mathbb{R}^{2}$ be a simply-connected region on the $x y$-plane.
Let vector field $\overrightarrow{\mathbf{F}} \in C^{(1,1)}(D)$ s.t. $\overrightarrow{\mathbf{F}}(x, y)=\langle M(x, y), N(x, y)\rangle$. Then:

$$
\overrightarrow{\mathbf{F}} \text { is conservative } \Longleftrightarrow \overrightarrow{\mathbf{F}} \text { is a gradient field } \Longleftrightarrow \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

- CURL TEST FOR A GRADIENT FIELD IN \mathbb{R}^{3} :

Let $E \in \mathbb{R}^{3}$ be a simply-connected solid in $x y z$-space.
Let vector field $\overrightarrow{\mathbf{F}} \in C^{(1,1,1)}(E)$ s.t. $\overrightarrow{\mathbf{F}}(x, y, z)=\langle M(x, y, z), N(x, y, z), P(x, y, z)\rangle$. Then:

$$
\overrightarrow{\mathbf{F}} \text { is conservative } \Longleftrightarrow \overrightarrow{\mathbf{F}} \text { is a gradient field } \Longleftrightarrow \nabla \times \overrightarrow{\mathbf{F}}=\overrightarrow{\mathbf{0}}
$$

- PATH INDEPENDENCE:

Let S be an open connected set in either \mathbb{R}^{2} or \mathbb{R}^{3}.
Then line integral $\int_{C} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{R}}$ is independent of path in S if for any two points $P, Q \in S$, the line integral along every piecewise smooth curve in S from P to Q has the same value.

- EQUIVALENT CONDITIONS FOR PATH INDEPENDENCE:

Let S be an open connected set in either \mathbb{R}^{2} or \mathbb{R}^{3}.
Let vector field $\overrightarrow{\mathbf{F}}$ be continous on S.
Then the following are equivalent (TFAE):
(i) $\quad \overrightarrow{\mathbf{F}}$ is a gradient field on S. i.e. $\overrightarrow{\mathbf{F}}=\nabla f$ for some scalar potential f.
(ii) $\oint_{C} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{R}}=0$ for every piecewise smooth closed curve C in S.
(iii) $\int_{C} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{R}}$ is independent of path within S.

- SIMPLER PATH CHOICES FOR PATH INDEPENDENT LINE INTEGRALS:

Suppose the path Γ for $\int_{\Gamma} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{R}}$ starts at point $P\left(x_{0}, y_{0}\right)$, ends at point $Q\left(x_{1}, y_{1}\right)$, and is too "complicated."
Moreover, suppose finding a scalar potential for $\overrightarrow{\mathbf{F}}$ is too tedious or not possible (due to a nonelementary integral.)

- A simpler path Γ^{*} is the straight line path from P to $Q: \quad \overrightarrow{\mathbf{R}}^{*}(t):=\left\langle x_{0}+\left(x_{1}-x_{0}\right) t, y_{0}+\left(y_{1}-y_{0}\right) t\right\rangle$ for $t \in[0,1]$.
- A simpler path Γ^{*} is the union of one horizontal path \& one vertical path from P to $Q: \quad \Gamma^{*}=\Gamma_{H L}^{*} \cup \Gamma_{V L}^{*}$ where

$$
\begin{aligned}
\overrightarrow{\mathbf{R}}_{H L}^{*}(t):=\left\langle x_{0}+\left(x_{1}-x_{0}\right) t, y_{0}\right\rangle \text { for } t \in[0,1] \quad \text { and } & \overrightarrow{\mathbf{R}}_{V L}^{*}(t):=\left\langle x_{1}, y_{0}+\left(y_{1}-y_{0}\right) t\right\rangle \text { for } t \in[0,1] \\
& -\mathrm{OR}- \\
\overrightarrow{\mathbf{R}}_{V L}^{*}(t):=\left\langle x_{0}, y_{0}+\left(y_{1}-y_{0}\right) t\right\rangle \text { for } t \in[0,1] \quad \text { and } \quad & \overrightarrow{\mathbf{R}}_{H L}^{*}(t):=\left\langle x_{0}+\left(x_{1}-x_{0}\right) t, y_{1}\right\rangle \text { for } t \in[0,1]
\end{aligned}
$$

Corresponding simpler paths apply for three dimensions.

EX 13.3.1: Let vector field $\overrightarrow{\mathbf{F}}(x, y)=\left\langle y^{2}, 2 x y-3\right\rangle$ and C be any smooth path from $P(0,0)$ to $Q(2,-1)$.
(a) Verify that $\overrightarrow{\mathbf{F}}$ is conservative. \quad (b) Find a scalar potential f for $\overrightarrow{\mathbf{F}} . \quad \pm$ (c) Compute $I=\int_{C} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{R}}$.

EX 13.3.2: Let vector field $\overrightarrow{\mathbf{F}}(x, y, z)=\left\langle y z e^{x y}, x z e^{x y}, e^{x y}\right\rangle$ and Γ be any smooth path from $P(7,0,2)$ to $Q(0,8,12)$.

(a) Verify that $\overrightarrow{\mathbf{F}}$ is a gradient field. $\quad(\mathrm{b})$ Find a scalar potential f for $\overrightarrow{\mathbf{F}} . \quad$| |
| :---: |
| (c) | Compute $I=\int_{\Gamma} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{R}}$.

EX 13.3.3: Let C be the path traced by $\overrightarrow{\mathbf{R}}(t)=\left\langle 2 \sin \left(\frac{\pi t}{2}\right) \cos (\pi t), \arcsin t\right\rangle$ for $0 \leq t \leq 1$.
(a) Verify that line integral $I=\int_{C}[(\sin y) d x+(3+x \cos y) d y]$ is independent of path (IoP).
(b) Compute line integral I without finding a scalar potential.

EX 13.3.4: Let Γ be the path traced by $\overrightarrow{\mathbf{R}}(t)=\left\langle t, t^{2}, t^{4}\right\rangle$ for $0 \leq t \leq 1$.
(a) Verify that line integral $I=\int_{\Gamma}\left[\left(4 x e^{z}\right) d x+(\cos y) d y+\left(2 x^{2} e^{z}\right) d z\right]$ is independent of path (IoP).
(b) Compute line integral I without finding a scalar potential.

