GREEN'S THEOREM [SST 13.4]

- CLOSED CURVES:

A closed curve is a curve that begins \& ends at the same point.
Special notation is used with line integrals along closed curves:

$$
\oint_{C} f d s \quad \oint_{C} f d x \quad \oint_{C} f d y \quad \oint_{C} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{R}}
$$

- JORDAN CURVES:

A Jordan curve is a piecewise smooth closed curve that does not intersect itself.

- POSITIVELY ORIENTED JORDAN CURVES:

A Jordan curve is positively oriented if when moving along the curve via a parameterization, the interior region of the curve stays to your left as parameter t increases.

- GREEN'S THEOREM FOR SIMPLY-CONNECTED REGIONS:

Let $D \subset \mathbb{R}^{2}$ be a simply-connected region in the $x y$-plane. (see picture below)
Let Γ be a positively oriented piecewise smooth Jordan curve that bounds region D. (see picture below)
Let vector field $\overrightarrow{\mathbf{F}} \in C^{(1,1)}(D)$ s.t. $\overrightarrow{\mathbf{F}}(x, y)=\langle M(x, y), N(x, y)\rangle$.
Then

$$
\oint_{\Gamma}(M d x+N d y)=\iint_{D}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d A
$$

EX 13.4.1: Let C be the positively oriented quarter-circle with boundary points $(0,0),(2,0),(0,2)$.
Use Green's Theorem to compute $I=\oint_{C}[(5 x-6 y+7) d x+(3 x+2 y+1) d y]$.

EX 13.4.2: Let Γ be the positively oriented rectangle with vertices $(0,0),(3,0),(0,4),(3,4)$.
Use Green's Theorem to compute $I=\oint_{\Gamma}[2 x y d x+x \cos (\pi y) d y]$.

EX 13.4.3: Let C be the positively oriented trapezoid with vertices $(0,0),(3,0),(0,4),(2,4)$.
Use Green's Theorem to compute $I=\oint_{C}\left[\left(\arctan (\sqrt{x})+y^{3}\right) d x-\left(3 x^{2}-\sin \left(y^{2}\right)\right) d y\right]$.

